• Title/Summary/Keyword: Infra Red

Search Result 484, Processing Time 0.025 seconds

A COMPARATIVE STUDY BETWEEN DEGREE OF CONVERSION AND FLEXURAL STRENGTH OF COMPOSITE RESINS

  • Lee Seong-Hee;Pae Ahran;Kim Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.333-342
    • /
    • 2006
  • Statement of problem. Although many studies have been carried out to investigate the correlation between the degree of conversion and the flexural strength of composite resins, there is minimal information in the literature attempting to compare degree of conversion, flexural strength and their correlation between restorative composite resins and flowable composite resins. Purpose. The purposes of this study were to measure the degree of conversion and flexural strength of composite resins with different rheological behavior and to correlate the two properties. Materials and methods. Four restorative (Vit-1-escence, Z-250, Tetric ceram, Esthet-X) and four flowable (Aeliteflo, Admiraflow, Permaflo, Revolution) light-curing composite resins were investigated. The degree of conversion(DC) was analyzed with Fourier transfer infra-red spectroscopy(FTIR) spectrum by a potassium bromide(KBr) pellet transmission method. The spectrum of the unpolymerized specimen had been measured before the specimen was irradiated for 60s with a visible light curing unit. The Poiymerized specimen was scanned for its in spectrum. The flexural strength(FS) was measured with 3-point bending test according to ISO 4049 after storage in water at $37^{\circ}C$ for 24 hours. The data were statistically analyzed by an independent sample t-test and one-way ANOVA at the significance level of 0.05. The dependence of flexural strength on the degree of conversion was also analyzed by regression analysis. Results. Mean DC and FS values ranged from 43% to 61% and from 84.7MPa to 156.7MPa respectively. DC values of the flowable composite resins were significantly higher than those of restorative composite resins (P < 0.05). The FS values of restorative composite resins were greater than those of flowable composite resins. No statistically significant correlation was observed between the DC and the FS tested in any of the composites. The dependence of FS on DC in restorative or flowable composite resins was not significant. Conclusion. It can be concluded that radical polymerization of the organic matrix is not a major factor in determining flexural strength of the commercially available composite resins.

A Case Report of Hunter Syndrome (Hunter 증후군 환아 증례 1례 보고)

  • Kim, Yoon-Young;Seo, Young-Min;Kim, Jang-Hyun
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.10
    • /
    • pp.77-85
    • /
    • 2008
  • Objective : The purpose of this study is to report a case that has an important meaning as a result of treating Hunter syndrome patient with oriental medicine for elevation of quality of life and continuous health care. Methods : The patient complained of abdominal dropsy, abdominal pain, constipation, frequent gases and the common cold. So we treated him with herbal medicine, acupuncture, infra red, laser, CEP nebulizer, aroma massage and cupping. Results : After treatment, the girth of abdomen didn't increse any more and abdominal pain, constipation, frequent gases and common cold were improved. Conclusion : This study shows that oriental medicine can elevate the Hunter syndrome patient's quality of life with continuous heath care and treatment for chief complaint. The further study is needed with more cases.

  • PDF

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

MIRIS 지구관측 적외선카메라 인증모델 성능 시험 및 Field Test

  • Mun, Bong-Gon;Park, Yeong-Sik;Lee, Chang-Hui;Park, Seong-Jun;Cha, Sang-Mok;Lee, Dae-Hui;Jeong, Ung-Seop;Nam, Uk-Won;Park, Jang-Hyeon;Yuk, In-Su;Ga, Neung-Hyeon;Lee, Mi-Hyeon;Lee, Deok-Haeng;Yang, Sun-Cheol;Kim, Yeong-Ju;Lee, Gi-Hun;Jeong, Han;Lee, Seung-U;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.45.1-45.1
    • /
    • 2009
  • 과학기술위성 3호의 주탑재체인 MIRIS (Multi-purpose InfraRed Imaging System)는 우주관측카메라 (Space Observation Camera, SOC)와 지구관측카메라 (Earth Observation Camera, EOC)가 독립적인 시스템으로 구성되어 있다. 지구관측카메라는 유효 구경 100 mm, F/5의 광학계로 3-5 마이크론 파장영역을 관측하며, 국내에서 개발된 적외선 검출기의 우주 인증 시험과 유사시 한반도 적외선 감시를 주요 목적으로 하고 있다. 고도 700km에서 지상을 볼 때 약 42m/pixel의 공간분해능을 나타낼 것으로 기대하고 있다. 지구관측카메라의 인증 모델(Qualification Model)은 냉동기를 제외한 모든 부품이 국내기술로 제작되었으며, 미러 본딩 및 릴레이 렌즈 조립 기술, 적외선 영상 검교정 기술 등 다양한 경험과 도전을 제공했다. 이 발표에서는 지구관측카메라 인증모델을 이용하여 수행한 주요 시험 과정을 소개한다. 국내 회사 (주)i3 system에서 제작된 적외선 검출기는 $320\times256$ HgCdTe array (평균 양자효율 80% 이상) 이며 77K에서 정상적으로 운영된다. Micro Stirling Cooler에 의해 듀어는 전원을 켠 후 5분 이내에 검출기 운영온도인 77K까지 내려간다. 적외선 광학계의 정렬, 시스템 MTF 측정, 흑체 측정 및 검교정 작업을 수행한 후 야외에서 다양한 경우에 대해 Field Test를 진행했다. 이 발표에서는 Field Test 과정과 이를 통해 얻은 결과를 발표하고, FM (Flight Model) 제작에 있어 수정해야 할 사항들을 제안해 본다.

  • PDF

MIRIS 적외선우주관측카메라 광학계 인증모델 설계제작 및 시험

  • Lee, Chang-Hui;Park, Seong-Jun;Mun, Bong-Gon;Cha, Sang-Mok;Lee, Dae-Hui;Jeong, Ung-Seop;Park, Yeong-Sik;Nam, Uk-Won;Park, Jang-Hyeon;Ga, Neung-Hyeon;Lee, Mi-Hyeon;Lee, Deok-Haeng;Yang, Sun-Cheol;Kim, Yeong-Ju;Lee, Gi-Hun;Lee, Seung-U;Matsumoto, T.;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.44.4-45
    • /
    • 2009
  • 과학기술위성 3호의 주탑재체인 MIRIS (Multi-purpose InfraRed Imaging System) 적외선우주관측카메라의 인증모델이 조립을 마치고 현재 성능시험이 진행 중이다. MIRIS 적외선광학계는 구경 80mm의 광시야(f/2) 굴절식 망원경으로서, 총 5매의 렌즈로 구성되어 있다. 렌즈들은 S-FPL53, S-TIH6, Fused Silica 등의 재료를 사용해 가공되었으며, MIRIS 관측 파장대역($0.9\sim2.0{\mu}m$)에서 투과율이 극대화되도록 반사억제 코팅이 적용되었다. MIRIS 광학계 및 광기계부 설계에 있어서의 주요 고려사항은, 1) 상온에서 조립된 상태에서 발사 시 위성체가 받는 충격과 진동을 견뎌낼 것, 그리고 2) 발사 후 위성 궤도상에서의 복사냉각을 통해 180K로 열수축된 상태에서 최적의 광학성능을 발휘할 것 등이다. 이러한 설계 개념을 바탕으로 MIRIS 광학계를 제작하였으며, 조립된 인증모델은 진동시험 및 열진공시험을 통과하였다. 이 발표에서는 MIRIS 적외선우주관측카메라 광학계의 인증모델 제작 과정과 부품별 시험, 그리고 조립 후 상온 및 저온성능시험 결과에 대하여 논의 한다.

  • PDF

First Light of the MIRIS, a Compact Wide-field Space IR Telescope

  • Han, Wonyong;Lee, Dae-Hee;Jeong, Woong-Seob;Park, Youngsik;Moon, Bongkon;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Seon, Kwang-Il;Nam, Uk-Won;Cha, Sang-Mok;Park, Kwijong;Park, Jang-Hyun;Yuk, In-Soo;Ree, Chang Hee;Jin, Ho;Yang, Sun Choel;Park, Hong-Young;Shin, Ku-Whan;Suh, Jeong-Ki;Rhee, Seung-Wu;Park, Jong-Oh;Lee, Hyung Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2014
  • The MIRIS (Multi-purpose InfraRed Imaging System) is a compact IR space Telescope, which has been developed by KASI since 2008 as the main payload of Korean STSAT-3. It was launched successfully by a Dnepr Rocket at Yasny Launch site, Russia in November 2013. After the launch, the STSAT-3 successfully settled down at Sun synchronous orbit with altitude of ~ 600km. Communications were regularly made between the ground station and the MIRIS with other secondary payload. We made a series of tests of the MIRIS during the verification period and found that all functions including the passive cooling are working as expected. The MIRIS has a wide-field of view $3.67{\times}3.67$ degrees and wavelength coverage from 0.9 to 2.0 micro-meter with the angular resolution of 51.6 arcsec. The main science missions of the MIRIS are (1) mapping of the Galactic plane with Paschen-alpha line (1.88 micro-meter) for the study of warm interstellar medium and (2) the measurement of large angular fluctuations of cosmic near infrared background radiation with I (1.05 micro meter) and H (1.6 micro meter) bands to identify their origin. We present the results of MIRIS initial operation in this paper.

  • PDF

Data Reduction Pipeline for the MIRIS Space Observation Camera

  • Pyo, Jeonghyun;Kim, Il-Joong;Park, Won-Kee;Jeong, Woong-Seob;Lee, Dae-Hee;Moon, Bongkon;Park, Youngsik;Park, Sung-Joon;Park, Kwijong;Lee, Duk-Hang;Nam, Uk-won;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.74-74
    • /
    • 2013
  • Multi-purpose Infra-Red Imaging System (MIRIS) is the main payload of the Science and Technology Satellite-3 (STSAT-3) to be launched in the late half of this year. For the Space Observation Camera (SOC) of MIRIS, we developed the data reduction pipeline with Python powered by Astropy, a community Python library for astronomy. The pipeline features the following functionalities: i) to retrieve the raw observation data from database and convert it to a FITS format, ii) to mask bad pixels, iii) to correct the non-linearity, iv) to differentiate the frames, v) to correct the flat-field, vi) to correct focal-plane distortion, vii) to improve the world coordinate system (WCS) information using known point-source catalog, and viii) to combine the sequentially taken frames. The pipeline is well modularized and has flexibility for later update. In this poster, we introduce the details of the pipeline's features and the future maintenance plan.

  • PDF

On Orbit Data Analysis About the Passive Cooling of MIRIS, a Compact Space Infrared Telescope

  • Lee, Duk-Hang;Moon, Bongkon;Jeong, Woong-Seob;Pyo, Jeonghyun;Lee, Chol;Kim, Son-Goo;Park, Youngsik;Lee, Dae-Hee;Park, Sung-Joon;Kim, Il-Joong;Park, Won-Kee;Seon, Kwang-Il;Nam, Uk-Won;Cha, Sang-Mok;Park, Kwijong;Park, Jang-Hyun;Yuk, In-Soo;Ree, Chang Hee;Jin, Ho;Yang, Sun Choel;Park, Hong-Young;Shin, Ku-Whan;Suh, Jeong-Ki;Rhee, Seung-Wu;Park, Jong-Oh;Lee, Hyung Mok;Matsumoto, Toshio;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2014
  • The Multi-purpose InfraRed Imaging System (MIRIS) is the main payload of Science and Technology Satellite 3 (STSAT-3), which was launched onboard Dnepr rocket from Russian Yasny Launch Base in November 2013. The MIRIS is an infrared (IR) camera, and the telescope has to be cooled down to below 200K in order to reduce thermal background noise. For the effective cooling and low-power consumption, we applied passive cooling method to the thermal design of the MIRIS. We also conducted thermal analysis and tested for the passive cooling before the launch of STSAT-3. After the launch, we have received State-of-Health (SOH) data from the satellite on orbit, including temperature monitoring results. It is important that the temperature of the telescope was shown to be cooled down to below 200K. In this paper, we present both the temperature data of the MIRIS on orbit and the thermal analysis results in the laboratory. We also compare these results and discuss the verification of the passive cooling.

  • PDF

RESEARCH FOR ROBUSTNESS OF THE MIRIS OPTICAL COMPONENTS IN THE SHOCK ENVIRONMENT TEST (MIRIS 충격시험에서의 광학계 안정성 확보를 위한 연구)

  • Moon, B.K.;Kanai, Yoshikazu;Park, S.J.;Park, K.J.;Lee, D.H.;Jeong, W.S.;Park, Y.S.;Pyo, J.H.;Nam, U.W.;Lee, D.H.;Ree, S.W.;Matsumoto, Toshio;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.39-47
    • /
    • 2012
  • MIRIS, Multi-purpose Infra-Red Imaging System, is the main payload of STSAT-3 (Korea Science & Technology Satellite 3), which will be launched in the end of 2012 (the exact date to be determined) by a Russian Dnepr rocket. MIRIS consists of two camera systems, SOC (Space Observation Camera) and EOC (Earth Observation Camera). During a shock test for the flight model stability in the launching environment, some lenses of SOC EQM (Engineering Qualification Model) were broken. In order to resolve the lens failure, analyses for cause were performed with visual inspections for lenses and opto-mechanical parts. After modifications of SOC opto-mechanical parts, the shock test was performed again and passed. In this paper, we introduce the solution for lens safety and report the test results.

HIGH REDSHIFT QUASAR SURVEY WITH IMS

  • JEON, YISEUL;IM, MYUNGSHIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.405-407
    • /
    • 2015
  • We describe a survey of quasars in the early universe, beyond z ~ 5, which is one of the main science goals of the Infrared Medium-deep Survey (IMS) conducted by the Center for the Exploration of the Origin of the Universe (CEOU). We use multi-wavelength archival data from SDSS, CFHTLS, UKIDSS, WISE, and SWIRE, which provide deep images over wide areas suitable for searching for high redshift quasars. In addition, we carried out a J-band imaging survey at the United Kingdom InfraRed Telescope with a depth of ~23 AB mag and survey area of ${\sim}120deg^2$, which makes IMS a suitable survey for finding faint, high redshift quasars at z ~ 7. In addition, for the quasar candidates at z ~ 5.5, we are conducting observations with the Camera for QUasars in EArly uNiverse (CQUEAN) on the 2.1m telescope at McDonald Observatory, which has a custom-designed filter set installed to enhance the efficiency of selecting robust quasar candidate samples in this redshift range. We used various color-color diagrams suitable for the specific redshift ranges, which can reduce contaminating sources such as M/L/T dwarfs, low redshift galaxies, and instrumental defects. The high redshift quasars we are confirming can provide us with clues to the growth of supermassive black holes since z ~ 7. By expanding the quasar sample at 5 < z < 7, the final stage of the hydrogen reionization in the intergalactic medium (IGM) can also be fully understood. Moreover, we can make useful constraints on the quasar luminosity function to study the contribution of quasars to the IGM reionization.