• 제목/요약/키워드: Information storage

검색결과 4,412건 처리시간 0.034초

서브클러스터링을 이용한 홀로그래픽 정보저장 시스템의 비트 에러 보정 기법 (Bit Error Reduction for Holographic Data Storage System Using Subclustering)

  • 김상훈;양현석;박영필
    • 정보저장시스템학회논문집
    • /
    • 제6권1호
    • /
    • pp.31-36
    • /
    • 2010
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time. Today any data storage system cannot satisfy these conditions, however holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System can be constructed without mechanical actuating part so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this research, to correct errors of binary data stored in holographic data storage system, a new method for reduction errors is suggested. First, find cluster centers using subtractive clustering algorithm then reduce intensities of pixels around cluster centers. By using this error reduction method following results are obtained ; the effect of Inter Pixel Interference noise in the holographic data storage system is decreased and the intensity profile of data page becomes uniform therefore the better data storage system can be constructed.

보관시설의 표준화 효과 평가방안 연구 (A New Evaluation Method for the Effectiveness of Standardized Storage Facilities)

  • 최창호;이옥주;박미란;김광호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1924-1930
    • /
    • 2009
  • According to Korea Standard Association (KSA-0013) storage facilities are so broadly defined that one cannot easily understand the area and contents of storage facilities. Generally speaking warehouse represents storage facilities which links two nodes in various logistics activities, and storage facilities should contain other facilities like mechanization equipment, automation equipment, information equipment, etc. This study is to show the direction of the evaluation method on the effectiveness of standardized storage facilities. The storage facilities treated in this research are not only storage facilities like warehouse but also storage supporting facilities like mechanization equipment, automation equipment, information equipment, etc. The method for evaluating the effectiveness of standardized storage facilities is to developing some measure of effectiveness (MOE) which represents the entire standardized effectiveness of storage related facilities. This study has originality in that the method for evaluation of standardized storage facilities has not been developed up to now.

  • PDF

A Reliable Secure Storage Cloud and Data Migration Based on Erasure Code

  • Mugisha, Emmy;Zhang, Gongxuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.436-453
    • /
    • 2018
  • Storage cloud scheme, pushing data to the storage cloud poses much attention regarding data confidentiality. With encryption concept, data accessibility is limited because of encrypted data. To secure storage system with high access power is complicated due to dispersed storage environment. In this paper, we propose a hardware-based security scheme such that a secure dispersed storage system using erasure code is articulated. We designed a hardware-based security scheme with data encoding operations and migration capabilities. Using TPM (Trusted Platform Module), the data integrity and security is evaluated and achieved.

Performance Evaluation of SSD-Index Maintenance Schemes in IR Applications

  • Jin, Du-Seok;Jung, Hoe-Kyung
    • Journal of information and communication convergence engineering
    • /
    • 제8권4호
    • /
    • pp.377-382
    • /
    • 2010
  • With the advent of flash memory based new storage device (SSD), there is considerable interest within the computer industry in using flash memory based storage devices for many different types of application. The dynamic index structure of large text collections has been a primary issue in the Information Retrieval Applications among them. Previous studies have proven the three approaches to be effective: In- Place, merge-based index structure and a combination of both. The above-mentioned strategies have been researched with the traditional storage device (HDD) which has a constraint on how keep the contiguity of dynamic data. However, in case of the new storage device, we don' have any constraint contiguity problems due to its low access latency time. But, although the new storage device has superiority such as low access latency and improved I/O throughput speeds, it is still not well suited for traditional dynamic index structures because of the poor random write throughput in practical systems. Therefore, using the experimental performance evaluation of various index maintenance schemes on the new storage device, we propose an efficient index structure for new storage device that improves significantly the index maintenance speed without degradation of query performance.

An Efficient Web Ontology Storage Considering Hierarchical Knowledge for Jena-based Applications

  • Jeong, Dong-Won;Shin, Hee-Young;Baik, Doo-Kwon;Jeong, Young-Sik
    • Journal of Information Processing Systems
    • /
    • 제5권1호
    • /
    • pp.11-18
    • /
    • 2009
  • As well as providing various APIs for the development of inference engines and storage models, Jena is widely used in the development of systems or tools related with Web ontology management. However, Jena still has several problems with regard to the development of real applications, one of the most important being that its query processing performance is unacceptable. This paper proposes a storage model to improve the query processing performance of the original Jena storage. The proposed storage model semantically classifies OWL elements, and stores an ontology in separately classified tables according to the classification. In particular, the hierarchical knowledge is managed, which can make the processing performance of inferable queries enhanced and stores information. It enhances the query processing performance by using hierarchical knowledge. For this paper an experimental evaluation was conducted, the results of which showed that the proposed storage model provides a improved performance compared with Jena.

홀로그래픽 정보 저장 장치에서의 실시간 틸트 서보 제어 (Real Time Tilt Servo Control of The Holographic Data Storage System)

  • 문재희;김상훈;양준호;양현석;박노철
    • 정보저장시스템학회논문집
    • /
    • 제3권1호
    • /
    • pp.13-16
    • /
    • 2007
  • The purpose of this paper is real time tilt servo control of the holographic data storage system. Holographic data storage device is a next generation data storage device with high storage density, high transfer rate and short access time. This device is very sensitive to a disturbance due to the enormous storage density. As to the recording material changed disc type, the media continuously vibrates as the disc rotates. When disc rotates, deviation, eccentricity and unbalance disturbance are occurred. This disturbances cause disc tilt, finally reference beam does not illuminates to correct incidence angle. Therefore real time tilt servo control is essential. In this paper, the algorithm is proposed to make real time tilt detection in angle multiplexing of the holographic data storage system with an additional servo beam and the experiments are performed.

  • PDF

A Secure Index Management Scheme for Providing Data Sharing in Cloud Storage

  • Lee, Sun-Ho;Lee, Im-Yeong
    • Journal of Information Processing Systems
    • /
    • 제9권2호
    • /
    • pp.287-300
    • /
    • 2013
  • Cloud storage is provided as a service in order to keep pace with the increasing use of digital information. It can be used to store data via networks and various devices and is easy to access. Unlike existing removable storage, many users can use cloud storage because it has no storage capacity limit and does not require a storage medium. Cloud storage reliability has become a topic of importance, as many users employ it for saving great volumes of data. For protection against unethical administrators and attackers, a variety of cryptography systems, such as searchable encryption and proxy re-encryption, are being applied to cloud storage systems. However, the existing searchable encryption technology is inconvenient to use in a cloud storage environment where users upload their data. This is because this data is shared with others, as necessary, and the users with whom the data is shared change frequently. In this paper, we propose a searchable re-encryption scheme in which a user can safely share data with others by generating a searchable encryption index and then re-encrypt it.

Coding-based Storage Design for Continuous Data Collection in Wireless Sensor Networks

  • Zhan, Cheng;Xiao, Fuyuan
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.493-501
    • /
    • 2016
  • In-network storage is an effective technique for avoiding network congestion and reducing power consumption in continuous data collection in wireless sensor networks. In recent years, network coding based storage design has been proposed as a means to achieving ubiquitous access that permits any query to be satisfied by a few random (nearby) storage nodes. To maintain data consistency in continuous data collection applications, the readings of a sensor over time must be sent to the same set of storage nodes. In this paper, we present an efficient approach to updating data at storage nodes to maintain data consistency at the storage nodes without decoding out the old data and re-encoding with new data. We studied a transmission strategy that identifies a set of storage nodes for each source sensor that minimizes the transmission cost and achieves ubiquitous access by transmitting sparsely using the sparse matrix theory. We demonstrate that the problem of minimizing the cost of transmission with coding is NP-hard. We present an approximation algorithm based on regarding every storage node with memory size B as B tiny nodes that can store only one packet. We analyzed the approximation ratio of the proposed approximation solution, and compared the performance of the proposed coding approach with other coding schemes presented in the literature. The simulation results confirm that significant performance improvement can be achieved with the proposed transmission strategy.

Ferroelectric ultra high-density data storage based on scanning nonlinear dielectric microscopy

  • Cho, Ya-Suo;Odagawa, Nozomi;Tanaka, Kenkou;Hiranaga, Yoshiomi
    • 정보저장시스템학회논문집
    • /
    • 제3권2호
    • /
    • pp.94-112
    • /
    • 2007
  • Nano-sized inverted domain dots in ferroelectric materials have potential application in ultrahigh-density rewritable data storage systems. Herein, a data storage system is presented based on scanning non-linear dielectric microscopy and a thin film of ferroelectric single-crystal lithium tantalite. Through domain engineering, we succeeded to form an smallest artificial nano-domain single dot of 5.1 nm in diameter and artificial nano-domain dot-array with a memory density of 10.1 Tbit/$inch^2$ and a bit spacing of 8.0 nm, representing the highest memory density for rewritable data storage reported to date. Sub-nanosecond (500psec) domain switching speed also has been achieved. Next, long term retention characteristic of data with inverted domain dots is investigated by conducting heat treatment test. Obtained life time of inverted dot with the radius of 50nm was 16.9 years at $80^{\circ}C$. Finally, actual information storage with low bit error and high memory density was performed. A bit error ratio of less than $1\times10^{-4}$ was achieved at an areal density of 258 Gbit/inch2. Moreover, actual information storage is demonstrated at a density of 1 Tbit/$inch^2$.

  • PDF

곡률이 있는 벽면근처에서 고속회전하는 유연디스크의 거동 해석 (A Study on the Behavior of a Spinning Flexible Disk near a Curved Wall)

  • 이호렬;임윤철
    • 정보저장시스템학회논문집
    • /
    • 제2권3호
    • /
    • pp.201-207
    • /
    • 2006
  • Information storage devices have been studied to increase the storage capacity and the data transfer rate as well as to decrease the access time and their physical sizes. Optical information storage devices have been achieved high-capacity by reducing optical spot size remarkably due to the development of Blue-ray technology. Optical information storage devices usually use 1.2mm-thick polycarbonate(PC) media to get high enough stiffness. However, it would be better if we can decrease the thickness of a disk for achieving thinner device while keeping the capacity as large as possible. Decreasing the thickness of the storage media makes it difficult to read and write data because it increases the transverse vibration of the rotating disk due to the interaction with surrounding air and the vibration characteristics of thin flexible disk itself, Therefore, a special design based on the fluid mechanics is required to suppress the transverse vibration of the disk in non-contact manner so that the optical pickup can read/write data successfully. In this study, a curved wall is proposed as a stabilizer to suppress the transverse vibration of a $95{\mu}m$-thick PC disk. The characteristics of disk vibration due to a curved wall have been studied through numerical and experimental analysis from the fluid mechanics point of view. The proposed shapes are possible candidates as stabilizers to suppress the transverse vibration of a flexible disk which rotates at high speed.

  • PDF