
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 436
Copyright ⓒ 2018 KSII

A Reliable Secure Storage Cloud and Data

Migration Based on Erasure Code

Emmy1 Mugisha and Gongxuan Zhang2
1School of Computer Science and Engineering, Nanjing University of Science and Technology

Naning, 210094 - China
[e-mail: emymugi@gmail.com]

2 School of Computer Science and Engineering, Nanjing University of Science and Technology
Naning, 210094 - China

[e-mail: gongxuan@njust.edu.cn]
*Corresponding author: Emmy MUGISHA

Received May 4, 2017; revised June 17, 2017; revised August 29, 2017; accepted September 15, 2017;

published January 31, 2018

Abstract

Storage cloud scheme, pushing data to the storage cloud poses much attention regarding
data confidentiality. With encryption concept, data accessibility is limited because of
encrypted data. To secure storage system with high access power is complicated due to
dispersed storage environment. In this paper, we propose a hardware-based security
scheme such that a secure dispersed storage system using erasure code is articulated. We
designed a hardware-based security scheme with data encoding operations and migration
capabilities. Using TPM (Trusted Platform Module), the data integrity and security is
evaluated and achieved.

Keywords: Storage cloud, erasure code, TPM, information storage and retrieval, data
security

http://doi.org/10.3837/tiis.2018.01.021 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 437

1. Introduction

Fast Internet generation and Internet of things (IoT) usability posed public attention in
recent decades. Several services are derived from the Internet domain so that users can gain
access with on-demand concept. The concept of cloud computing is a resource pool
through Internet. Cloud tenants apparently gain access to storage cloud services without
good knowledge on control and technical aspects of the whole cloud system. In this work,
we look at the design of a storage cloud system that is rooted in hardware-based security for
data confidentiality and integrity. A storage cloud system is composed of independent
storage nodes dispersed in different remote geographical locations. Data security and
integrity are emerging concerns for storage cloud design. Several researchers proposed
their ideas in pushing data file to storage nodes [1, 2, 3, 4, and 5].

Replication technique is considered as a mean to provide data integrity. This is achieved
by replicating a file (data) into a random number of replicas in a way that each storage node
will accommodate one file replica. However, for replication concept, given that a storage
node is down and is no longer accessed, the replica that it accommodates will never be
restored anymore. Therefore, applying erasure code (EC) as a file distribution technique
can improve data integrity. This is assured by encoding a file f of k symbols into a
codeword of n symbols. Moreover, EC will then distribute individual codeword symbols to
distinct storage nodes on the storage cloud architecture. Given that a node is compromised,
its codeword symbol is directly equal to an erasure error. With erasure code computation, it
can recover compromised storage nodes when the fixed number of possible EC recoverable
nodes is reached. The file can be recovered from the codeword symbols dispersed in
non-compromised storage nodes under EC decoding process. EC computes the file into
codeword symbols independently. However, it is best applicable in a dispersed storage
system. In the encoding process, when a data symbol (file) is pushed to the storage node,
the node independently derives a codeword symbol corresponding to the receipted data
symbol and stores it. Also, the recovery process is the same as that of the encoding.

Pushing data to the storage cloud poses much attention regarding data confidentiality. To
implement robust data confidentiality over a storage node, each node must employ trusted
platform module (TPM) functions with which a log file will be stored. Given that a tenant
initiates an access request to his file stored in the storage cloud node, the TPM functions
employed on this storage node must authenticate the request source by comparing it with
the pre-measured parameters (log file) stored in the destination storage node’s TPM. When
authentication process succeeds, the tenant will retrieve the codeword symbols from the
requested storage nodes, and the EC decode process follows. Using TPM functions will
avoid several storage security problems. Firstly, for encryption data security is easy to be
compromised due to its software-based security scheme, key sharing and protection is
managed by tenants through Internet medium. Secondly, long-term storage systems based
on encryption are replaced decades by decades, which end up by failing re-encryption
processes due to new updated strong cryptographic algorithms.

438 Mugisha et al: A Reliable Secure Storage Cloud and Data Migration Based on Erasure Code
2. Background

2.1 Trusted Platform Model
In this paper, we introduce a hardware-based security scheme using Trusted Platform
Module (TPM). TPM is a standardized dedicated microcontroller explored to secure
hardware by integrating cryptographic keys into devices. Moreover, the TPM technical
specification was implemented by Trusted Computing Group (TCG). After that, in 2009
the specification was standardized as ISO/IEC 11889 by the International Organization for
Standardization (ISO) and International Electrotechnical Commission [6]. Furthermore,
TCG revised the TPM version 1.2 specifications and on the 13 March 2014 it was
published [7]. However, the proposal revision for the TPM version 2.0 specifications was
also published on March 13, 2014, for public review. Hence, the latest TPM 2.0
specification revision was released in October 2014 [8].
TPM provides functions for the secure generation of cryptographic keys and limits their
use in addition to a random number generator [9][10]. Moreover, it also includes
capabilities such as remote attestation, binding, and sealed storage. The remote
attestation generates a hash key summary of the hardware and software configurations
which allows a third party to verify that the software has not been changed. Next, binding
encrypts data using a unique RSA key (TPM binding key) from a storage key [11]. Lastly,
Sealing is also TPM capability (TPM_Seal) that encrypts data in the same way as binding
does but the difference is that it forces TPM to be in a certain state before the data is
decrypted (TPM_Unseal) [12]. Therefore, cloud applications can use TPM to authenticate,
secure hardware devices and data respectively since each TPM chip has a unique and secret
RSA key burned into it during manufacture. Hence it is capable of a platform or device
authentication as well as secures data storage.

2.2 TPM Application

In cloud computing scenario, putting the security down to the hardware level together
with software based solutions contributes improved protection than applying only a
software-based solution [13].

In addition, the United States Department of Defense (DoD) set a limit that its new
computer assets manufactured to support DoD must employ a TPM version 1.2 or above.
Consequently, the TPM is capable of device measurement, integrity, identification,
encryption and authentication [14]. The following are selected but not limited areas of
TPM application or use.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 439

Fig. 1. TPM simplified architecture

a) Device or platform integrity
The primary concept of a TPM is to assure the integrity of a platform. That is to say, in its
concept the term integrity implies that a platform or device must behave as intended to.
However, the platform is considered as any computer platform and not limited to PCs or a
particular operating system. Moreover, TPM compose platform configuration registers
(PCR) that allow secure storage and reporting of security measurements. In addition to that,
these measurements are used to monitor any change of pre-measured configurations that
determines the next platform’s activity. For instance, in Linux Unified Key Setup (LUKS)
[15] and Microsoft's BitLocker Drive Encryption and PrivateCore vCage memory
encryption is described.

Therefore, the cloud provider’s BIOS and the operating system should take the primary
responsibility to utilize TPM in order to assure their cloud architecture integrity. From here,
applications and users running on that cloud can rely on its security features, i.e. secure I/O,
uncompromised keyboard entries, memory and storage operations.

b) Disk encryption

In full disk encryption applications, i.e. BitLocker Drive Encryption, dm-crypt and
SecureDoc can employ this TPM technology to store and protect the keys used to encrypt
the computer hard disks that provide integrity authentication for a trusted boot pathway.
For instance BIOS, boot sector, and etc.

c) Password protection
In a general normal access to keys and data, the authentication process is always required
by entering a password phrase. And, if the authentication process is implemented at a
software level only, the access typically is prone to dictionary attacks. However, since

SHA-1

Random Number Generator

Key Generator

PCR

Non-Volatile Memory

Execution Engine

Opt-In (TPM State Information)

Input/output

HMAC

Cryptography Engine

440 Mugisha et al: A Reliable Secure Storage Cloud and Data Migration Based on Erasure Code
TPM is implemented in a hardware module, a dictionary attack prevention mechanism was
presented. And this effectively protects against automated dictionary attacks and still allow
the user to try as many as the sufficient and reasonable number of tries. Therefore, with this
hardware based dictionary attack prevention, the user can choose shorter or weaker
password phrases which are easier to remember. That is to say, without this hardware
security level of protection, only password phrases with longer and high complexity would
provide sufficient protection.

In this position paper, we target the problem of data integrity and security by pushing
authenticity and security measures to the hardware level. We consider security control on a
system that is composed of distributed storage nodes. Relying on encryption algorithms
over storage systems through Internet channels is a risky concept. As a solution to
distributed systems, we define TPM functions per storage node independently. Specifically,
these nodes are required to perform all storage cloud service authentications. Moreover,
with TPM functions, we address a new security scheme based on hardware levels together
with erasure code to build a robust, secure storage cloud system. The erasure code concept
implements file (data) encoding steps and migration from one tenant/node to another. The
definition of encoding, TPM, and data migration on this cloud achitecture will result a
relaible storage system with data integrity and confidentiality. Therefore, we look at the
system in a wide setting that permits easy modification between the number of storage
nodes and stable.

Given a cloud with n dispersed storage nodes, a file is halved into k data blocks and
symbolized as a variable of k symbols. To this far, the ideal is to construct a secure storage
cloud environment that afford secure data migration using hardware-based security
through node-to-node TPM authenticity scheme. The TPM authenticity scheme with
erasure codes to support file distribution will produce a robust and relaible storage cloud
architecture that assures data migration between tenants. The dispersed storage nodes will
independently perform encoding process and data migration under the umbrella of TPM
node-to-node authenticity. Here, the wide setting of a secure storage cloud environment
introduced. We set to approximate the number of storage nodes to be higher than
number of data blocks (k). That is to say, the number of storage nodes n is bigger than k.
Hence, the more the number of data blocks, the more data availability and EC efficiency.

2.3 Erasure Code
Erasure coding (EC) is a method for protecting data (a file). Data is broken into fragments
(blocks), it then expanded and encoded into redundant data pieces and stored across a set of
different locations or storage media [16]. However, the goal of erasure coding is to enable
data that becomes corrupted at some point in the storage process, to be
reconstructed/recovered by using information about the data that is stored in other nodes of
the same cloud. Moreover, erasure codes are often used instead of traditional RAID [17]
because of their ability to reduce the time and overhead required to reconstruct data in the
storage cloud architecture. Its drawback is that it can be more CPU-intensive, and that can
translate into increased latency. Nevertheless, erasure coding can be useful with large

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 441

quantities of data and any applications or systems that need to tolerate failures, such as disk
array systems, data grids, distributed storage applications, object stores and archival
storage. In addition, the commonly current use case for erasure coding is object-based
storage cloud.

Fig. 2. Erasure code overview

Erasure coding creates a mathematical function to describe a set of numbers so that they
can be checked for accuracy and recovered if one is lost. This function is referred to
polynomial interpolation or oversampling as the key concept behind erasure codes. Going
deeper, in mathematical terms the protection offered by erasure coding can be represented
in simple form by the following expression: mkn += , where variables k is the original
amount of data or symbols and m is the extra or redundant symbols that are added to
provide prevention from system failure. Furthermore, the variable n is the total number of
symbols created after the erasure coding process. For example, in a 10 of 16 configurations,
or EC 10/16, six extra symbols (m) should be added to the 10 base symbols (k).
Consequently, the 16 data fragments (n) will then be spread across 16 drives, nodes or
geographic locations. Hence, the original file could be reconstructed from 10 verified
fragments.

Much more, erasure codes is also known as forwarding error correction (FEC) codes, it
has been developed more than 50 years ago. However, different types have emerged since
that time and in one of the earliest and most common types is Reed-Solomon [18]. From
this type, the data (a file) can be reconstructed using any combination of k symbols even if
m symbols are unavailable. Based on the above example, in EC 10/16, six drives, nodes or
geographic locations might be lost or unavailable, and the original file would still be
recoverable.

 ╄

m additional
storage devices

n storage
devices

The system tolerates up
to m device failures

442 Mugisha et al: A Reliable Secure Storage Cloud and Data Migration Based on Erasure Code
3. Related Work

3.1 Dispersed Storage Systems
Considering decades back, the Network-Attached Storage (NAS) [19] with the Network
File System (NFS) [20] provided spare storage machines via network targeting tenants that
would access these machines using network connectivity. Moreover, some advanced
research findings on security, robustness, availability, efficiency, and scalability were
presented in [1, 2, 21 and 22]. A non-centralized storage system is scalable due to
individual storage node that behaves on and off without a central control authority. As a
result, about storage node failures, an easy solution is to replicate a file and push the
replicas into distinct storage nodes. Also, this solution is expensive based on the increase of
a certain number of replicas in a specific number of iterations with time. To solve this issue,
erasure code is introduced to encode a file into codeword symbols [5, 19, 23, 24, and 12]. A
file is encoded as a variable of symbols, whereby individual storage node keeps a codeword
symbol. Therefore, a storage node failure is an equivalent of erasure error of the pushed file
codeword symbol. Random linear codes allow dispersed encoding and each codeword
symbol is severally derived.

Storing a file of k data blocks, a storage node randomly assigns a chosen coefficient to
these data blocks, and then pushes both the codeword symbols and coefficients. To retrieve
the file, a tenant initiates a request to k storage nodes to retrieve the pushed file codeword
symbols and coefficients, hence compute the linear systems. Dismakis et.al [25] looks at an
event where akn = and a is immutable value. They depicted out that dispersing a block of
a file to q randomly selected storage nodes is sufficient with a probability ()1op

k − of a

restored file, where akbq 5ln >= , and p is the prime order of the used group. Therefore,
setting kbq ln= is equal to n storage nodes to which a file data blocks are sent to. As q
increases, the connectivity cost between nodes and file codeword transfer becomes
expensive as well as retrieval probability the better. Going deeper, the design show weak
data confidentiality and this opens a door for an adversary to compromise k storage nodes,
hence getting the exact data (m). Lin and Tzeng [26] designed strong data confidentiality
problems by implementing a secure decentralized erasure code for the storage systems.
Moreover, their architecture is composed of dispersed storage servers and key servers for
cryptographic key management. In this architecture, stored files are encrypted and then
encoded under erasure code settings. Whenever there is a need for a file, the user requests
storage servers through the key servers. The user gain access to the stored file when n
available key servers are over a threshold t with best probability.

In [27], a Secure Multi-Agent based framework for Communication among Open Clouds
is presented. In this framework, the secure interoperability, portability, and the
communication bebween different number of clouds is introduced within cloud computing
concept. They urgue that increasing the scope of clouds in-term of processing,
infrastructure, application, utility and other services, inter-communication within clouds is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 443

needed. And for single cloud architecture implementation, they considered it impossible
in-terms of commutation, and that security comes first, and considered the most important
element to enhence the communication. Therefore, to resolve this issue they proposed the
Multi based Framework for Secure and Reliable Communication among Open Clouds.
That, all the MAs (Mobile Agents) are registered with directory services, and every MAs of
the cloud interceipts the information about each other after being registered in the
directory.

Comparing their solution with our work (on a single cloud), their MAs is our Nodes and
DA is our main node (Fig. 5) with which all nodes are registred and communicate to each
through the main node under TPM authentication mechanism (Fig. 3) per node on the
network. They urgue that the Directory Agent provides advantegeous linkages between
MAs and security in addition compared to traditional frameworks, in our opinion all
frameworks that still implement software based security solutions are regarded vulnerable
to adversaries. Therefore, in this case our scheme is designed in the way that each node
implements TPM capabilities and its TPM provenance information or identification is
pre-measured at the initail stage and submited to the main node’s TPM, therefore our
authentication occures at the TPM level which is not the case for them. Their DA is based
on software security level which makes their IDs and other identification matrics
vulnerable, while our main node is based on harware security level and no adversary can
penetrate it.

The BDMSC design integrates computing-networking technological platforms, which
allow fully adaptive energy-efficient joint reconfigurations of the virtual resources
available at data centers and mobile devices under hard real-time constraints, to cope with
unpredictable volume of data generated by this emerging applications was introduced in
[28]. In their work, they identified both the major opportunities and challenges of the
BDSMC paradigm. In a practical view, they presented the StreamCloud architecture and
prototype to contextualize their simulation results. The reported results concluded that the
resource management framework implemented by StreamCloud in the real-world might
attain noticeable energy savings. Compared to our model, the BDMSC design show high
potential use of distributed computing resources, and its performance and
energy-efficiency play a big role in the world of cloud computing. However, the
orchestration of BDMSC architecture does not detail data flow security mechanism and
computing resources integrity per inter-networked resource to establish trust between
inter-communicating networked-computing resources.

We urge that applying TPM-Based security over BDMSC architecture may strengthen
trust and integrity perspectives.

Similarly, the FoE (Fog-of-Everything) by [29] looks at the spectrum of
hierarchically-organized networked computing nodes (Fog and remote Cloud data centers)
to cope with the increasingly large volume of data from IoE-based applications. The FoE
also highlite adaptive energy-efficient reconfiguration and orchestration of the virtualized
computing-plus-communication resources available at the computing nodes and thing

444 Mugisha et al: A Reliable Secure Storage Cloud and Data Migration Based on Erasure Code
devices under real-time constraints on the allowed computing-plus-communication delay
and service latency.

To archieve this, they introduced FoE model. This model consider that in the next years,
IoE devices will be equipped with multiple (possibly, heterogeneous) wireless network
interface cards. And, that this will open the doors to the design of energy-efficient transport
protocols, that rely on the emerging Multipath TCP paradigm [30]. Therefore, the
increment of the per-connection throughput, while limiting the energy overhead induced by
the parallel utilization of multiple radio interfaces, should be considered. Henceforth, that
the native selforganizing feature of the IoE model induces hierarchical relationships among
the involved things [31]. As a result, the design of new Network-layer communication
primitives for IoE-based ecosystems is required in order to implement suitable forms of
selective multicast that account for the relative roles of the involved IoE devices [31].
Unfortunately, FoE lack innovative solutions tackling distributed security, trustworthyness
and thing authentication that is needed in order to allow the migration of the FoE paradigm
from the theory to the practice level. This position paper addresses hardware-based security
to the provisioning of integrity among cloud architectural networked resources which on
the other hand would be applied to FoE model as a result of strengthening trust in addition
to latency and energy- efficiency.

3.2 Integrity Computation Concept
Data and service integrity checking is a kennly looked at concept in the world of cloud
computing, in particular storage cloud systems. Moreover, when a tenant pushes his file
data to the storage cloud, there is no more way to control it given that the tenant desires to
check the status of his data, i.e. if the data is still the same that was stored initially to the
storage nodes. The concept of data integrity checking [32 and 33] and the opinion of cogent
evidence of storage trends [34, 35, and 36] are presented. However, public stored data
auditing was addressed in Wang et al. [37].

4. System Model and Design
Our system model consists of tenants, control node (main node that perform file
distribution) and n dispersed storage nodes nii NNN,, 1+ . Storage nodes allow storage
services and authentication processes for data security and integrity provisioning. We show
our system output in four categories as follows: system apparatus, data storage, data
migration, and data restoration. First, describing system apparatus category, the system
controller selects system settings to which the whole system will base on to serve tenants
and other system functionalities.

A system node implements TPM functions. Each node is assigned a TPM identity (stored
in the log file) which differentiate it from other nodes on the same network (Fig. 5). Second,
data storage category, a tenant prepares his file f and sends it to main storage node. A file is
then segmented into k blocks 11 ,....,, −+ kii BBB where 0=i and f has a unique source identity

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 445

(ID). After segmentation process, the main node pushes each block to q randomly chosen
storage nodes (Fig. 5). Moreover, when a block is receipted at a storage node, each storage
node individually performs erasure code per block, and a codeword symbol is calculated
and stored on it (receipted node). Third, for a tenant to migrate his file from one node to
another, the nodes in communication authenticates themselves based on pre-measured
parameters stored on the log file (TPM). If TPMs accept transfer/communication between
communicating nodes, the migration request is allowed without any other hindrance in
terms of data security and threats. To archive this, each storage node TPM identifications or
provenance information is pre-measured and saved in a log file.

For a node to deliver any storage service as mentioned in categories, it will first measure
its authenticity based on pre-stored measurements. And if no matches are found, the service
will not be allowed hence system integrity. Lastly, to restore a file from storage nodes, a
request is made by a tenant through main control node. In the same sense, when the request
is accepted and participating node-to-node authentication process follows, this node
continues by decoding codeword symbols from corresponding storage nodes based on
encoding settings by erasure code. Therefore, after erasure code decoding process, the
main system node merges encoded codeword symbols to derive the original file f. In the
event that a system node fails, the system generates a new one automatically. After, the new
generated storage node requests new codeword symbols from k available storage nodes and
stores it. Hence, the system node failure is resolved and the original file is computed.

4.1 Security and Confidentiality Model
We look at data confidentiality for both data storage, access and data migration within our
cloud model. In this model, when an adversary tries to compromise the system
functionality with regard to a specific tenant instance, the adversary tries all storage nodes
and tenants. Unfortunately, based on our system architectural TPM-based design, the
adversary will try as much iteration as he can to compromise the specific system targets but
he will never succeed due to TPM-based security capabilities. However, each storage node
will keep all TPM pre-measure log files from neighboring nodes and tenants attached to the
same system. From here, a tenant to penetrate into any system attached node, these TPM
pre-measured logs must be computed out and compared node-to-node and tenant-to-node.
An adversary and tenant have no access to stored logs (log files).

Therefore, the storage cloud design mentioned is trusted if no probabilistic polynomial
opportunity for an adversary to detach TPM functions from any of n storage nodes on our
storage cloud architecture. It implements such that unauthorized node or tenant will never
gain access to stored files, all nodes must be considered before by measuring their log
parameters and dispersed to each node’s TPM through the main control node.
Consequently, our model looks at the security of data storage and migration.

446 Mugisha et al: A Reliable Secure Storage Cloud and Data Migration Based on Erasure Code
5. Secure Storage Cloud Systems Design

Introducing our storage system, we explain the algebraic setting, the robustness supposal,
and an erasure code, plus our idea.
Bilinear map: Let 1G and 2G be cyclical increasing groupings with a prime order p and g

1G∈ be a generator. A map is a bilinear map when it is computationally effective and has

the attributes of bilinear and non-degeneracy: as () ()xyyx
p ggeggeZyx ,,,, *

∧∧
=∈ and

()gge ,
∧

 is not the identity element in 2G . Let ()λ1Gen be an algorithm

generating pGGeg ,,, 21

∧
, where λ is the length of . Let Xx R=∈ denote that x is

randomly chosen from the set X.
Decisional bilinear Diffie-Hellman supposal: This supposal is that it is computationally

impracticable to differentiate the dispersions of ()

 ∧ xyzzyx ggegggg ,,,,, and

()

 ∧ rzyx ggegggg ,,,,, , where *,,, pR Zrzyx ∈ . Therefore, for any probabilistic

polynomial time algorithm A, the following is negligible (inλ):

 [() 0,,,,:,,,,Pr QrzyxbQggggA pRb

zyx ∗Ζ∈=

 () 1;, Qgg xyze
∧

=

 () { }]]2/11,0;, −∈=
∧

R
r bgge (1)

5.1 Erasure Code Concept
We look at file arena as the increasing cyclical grouping mentioned earlier. An encoder
generates a generator matrix []jigG ,= for njki <=<=<=<= 1,1 as follows: for each row,
the encoder randomly selects an entry and randomly sets a value from to the entry. The
encoder repeats this step times with replacement for each row. An input of a row can be
selected several times, but it can only be set to one value. The values of the rest inputs are
set to zero. Let the data file be () k

k Gfff 221 .,,........., ∈ .

The encoding process is to generate ()n
n Gwww 221 ..,,........., ∈ , where

jkg
k

jgjg fffw ,,,2,
2

,1,
11 .,,.........,= for nj <=<=1 . The first step of the decoding process is to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 447

compute the inverse of kk × sub-matrix K of G. Let K be []jiiG , for kjii <=<= ,1 . And Let

[]
kjijidK

<=<=
− =

,1,
1 . The final step of the decoding process is to compute

idk
jk

id
j

id
ji wwwf ,,2

2
,1

1 ,,.........,= for ki <=<=1 . Given that a tenant pushes two files 1f and

2f into four storage nodes. When the storage nodes 1N and 3N are available, and the
kk × sub-matrix K is invertible, a tenant will decode 1f and 2f from the codeword

symbols 21 , ww and the coefficients () ()3,21,1 ,0,0, gg which are stored in the storage nodes

1N and 3N , a system node failure is resolved.

5.2 Proposed Scheme
We introduce a hardware-based security scheme on storage cloud system nodes. This
scheme is trusted if it implements TPM functions to all communicating nodes attached to
the storage cloud architecture. Each node on the cloud will host a log file that compose
TPM node pre-measured parameters or characteristics as described in Fig. 3 and 4. A cloud
log file is extended to a node’s TPM Platform Configuration Register (PCR).

Fig. 3. Log file Storage

According to TPM functionalities underlying on PCRs, an application or a process can use
essentially internal memory slots and sealed storage. At TPM boot time, PCR is assigned to
its known values, and the only possible means of altering PCR values is by invoking the
TPM operation; data)Index,PRCExtend(where Index value is the PCR slot
identifier and Data is a value carrying TPM’s node characteristics (log file). When this
operation is invoked, it updates the value of PCR identified by its index with a SH-1 (H) of
the previous value of that PCR concatenated with the data provided.

 () dataPCRHPCR indexindex ||← (2)

448 Mugisha et al: A Reliable Secure Storage Cloud and Data Migration Based on Erasure Code

Data must be 20 bytes and larger DAT A values must be
hashed data A) H(DAT → before invoking . For a node or any other
cloud service to be executed, this log file will be called and compared to both
communicating ends.

Given that an adversary tries to enter our system, his source identification will not be
recognized as the known log file contents and therefore he will not gain access to our
system. For him to gain access, he needs to get into our log file and add or modifies its
contents. The access will never succeed due to TPM capabilities.

Fig. 4. TPM Node-to-Node Authentication

5.3 A Secure Cloud Data Migration
Referring to the previous section, our storage system is categorized into four categories.

System apparatus: The algorithm ()nSetUp 1 derives the system apparatus ∂. A tenant
computes his log file content based on his TPM characteristics to derive his credentials that
will uniquely allow and identify him from the storage system nodes and services. Running

()λ1Gen will derive ()pGGehg ,,,,, 21

∧
, where 211: GGGe =×

∧
is a bilinear map, g and h

are sources of 1G , and both 1G and 2G have the prime order p. Set

=∂

∧
fpGGehg ,,,,,, 21 , where { } *** 1,0: pp ZXf → and p is a one-way hash function.

Data storage: Given that a tenant A wants to store a file k of blocks
kfff ...,,........., 21 with the identifier of the log file ID, he distribute both and blocks to

n storage nodes nNNN,,........., 21 of the system. Tenant A pushes each if to q randomly
selected storage nodes. The storage nodes receive a collection of f with identical source ID
from A. However, if any if is not receipted to the storage node, the node

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 449

enters ()1,,1,0 IDfi = to the group of k. Therefore, the particular format of ()1,,1,0 ID is a
sign for the lost if . Also, the storage node performs erasure code function ()Encod on the
set of k and stores the encoded result as codeword symbol. That is to
say, ()kfffEncod ..,,........., 21 . For each if , the algorithm randomly chooses a
coefficient ig . Whereas, given that any if is lost, the coefficient ig is initialized to 0. And,
let ()iii rf ,,,0 β∞= . The encoding process is to compute an original codeword symbol

'f .

 () ()()∏ ∏= == k
i

k
i

gl
i

g
i yf 1 1

' ,,0 βα

 () i
k
i i

k
i

gl
ii

k
i i ygIDgfIDygg e ∑∏∑ =

∧

=== 111 ,,,,0

 () '
,,,,0 rr IDgwIDg e

∧
= (3)

Then, the encoded output is ()kgggf,,.........,, 21
' .

Data migration: When tenant A requests to migrate his file to another tenant B, he must
be known (in the system log file) by the system before. If A is not known by the system log
file before, he queries main node for source TPM registration and characteristics
measurements to update the system log file. A tenant source behavior must be measured
and recorded into the system log file before applying any request to the storage cloud as
described in Fig. 2. Let the identifier of the log file be ID, and a log file be shared to all
storage nodes through the main system node (Fig. 5). Therefore, using this file a storage
node will allow if migration operation with its ID. All storage nodes on the system are
interconnected via the main node (in the center) as drawn in the Fig. 5 below. Each node
implements TPM capabilities and erasure code operations. This is the main part of our
contribution, and each node performs authentication procedures as illustrated in Fig. 4
above.

Fig. 5. System Storage Nodes Network

450 Mugisha et al: A Reliable Secure Storage Cloud and Data Migration Based on Erasure Code
Data restoration: In this category, there are two possible means to restore a file. Firstly, a

tenant extracts or restores his own file through an integrity checking process. Given that a
request is made to the system attached along with a log file and source ID through the main
system node, the main node therefore updates all storage nodes per log file. The system
restores codeword symbols from q randomly selected storage nodes and then performs
decoding process per restored codeword symbol. The decoded restored codeword symbols
and log file ID are sent to the requestor. Secondly, the system will accept restoration event
on a file that has been migrated from another node. The process undergoes the same as
restoring (tenant A) a file as described above.

5.4 The Analysis and Evaluation
Here, we examine storage, computation complications, integrity and security of our storage
cloud system. We established the cloud environment using CloudSim simulator on a
ThinkPad computer operating on; Ubuntu Linux 14.04, with Inter (R) Core (TM)
i5-3230M, 2.60GHz, and 8.00GB RAM. We used TPM API from MIT project to introduce
its functionalities on our scheme.

Therefore, the time required for computation process as per the request made from tenant or
node depends on communicating TPM and node reliability. Storage capacity and
availability are achieved by the main node that locates where and how much storage spaces
available for certain storage request initiated by a tenant. We focus on the system security
and integrity, the full performance measurements and cloud features remain for further
research on the secure multi-cloud scheme.

Let the bit-size of an element in the group 1G be 1l and 2G be 2l . And let coefficients iig , be

randomly chosen from { } 31,0 lg . Then, for storage cost, to store a file of k blocks, a storage
node 1N stores a codeword symbol ()ii rIDb ,,,∞ and the coefficient vector

ikii ggg ,,2,1,,........., , there are total of ()32121 klll +++ bits, where

1, GIDi ∈∞ and 2Gri ∈ .

The average cost for a file bit stored in a storage node is () 2321 /21 klklll +++ bits, which
is dominated by 23 ll = for a sufficiently large k.

In practice, small coefficients, i.e., 23 ll << , reduce the storage cost in each storage node.

6. Conclusion
In this paper, we consider a storage cloud system that consists of storage nodes with TPM
and erasure code capabilities. A newly hardware-based security scheme for data integrity
and security on the storage systems is presented. It implements data encoding, migration
and restoration functions in a dispersed environment. In that, each storage node
independently performs data encoding and node-to-node integrity measurements to present

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 451

a robust storage cloud system.

Acknowledgement
This work was partly supported by a grant from National Natural Science Foundation
Grant NSFC 61272420 and 61472189 through the second author.

References
[1] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H.

Weatherspoon, ,C. Wells, B. Zhao and et al, “Oceanstore: An Architecture for Global-Scale
Persistent Storage,” in Proc. of Ninth Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 190-201, 2000. Article (CrossRef Link)

[2] P. Druschel and A. Rowstron, “PAST: A Large-Scale, Persistent Peer-to-Peer Storage Utility,”
in Proc. Eighth Workshop Hot Topics in Operating System (HotOS VIII), pp. 75-80, 2001.
Article (CrossRef Link)

[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R. Douceur, J. Howell, J.R. Lorch,
M. Theimer and R. Wattenhofer, “Farsite: Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment,” in Proc. of Fifth Symp. Operating System Design and
Implementation (OSDI), pp. 1-14, 2002. Article (CrossRef Link)

[4] A. Haeberlen, A. Mislove and P. Druschel, “Glacier: Highly Durable, Decentralized Storage
Despite Massive Correlated Failures,” in Proc. Second Symp. Networked Systems Design and
Implementation (NSDI), pp. 143-158, 2005. Article (CrossRef Link)

[5] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The Least-Authority Filesystem,” in Proc. of
Fourth ACM Int’l Workshop Storage Security and Survivability (StorageSS), pp. 21-26, 2008.
Article (CrossRef Link)

[6] International Organization for Standardization, "ISO/IEC 11889-1:2009," ISO.org, 2013.
Article (CrossRef Link)

[7] Trusted Computing Group, "Trusted Platform Module (TPM) Specifications,” Trusted
Computing Group. Article (CrossRef Link)

[8] Trusted Computing Group, "Trusted Platform Module Library," Trusted Computing Group.
Article (CrossRef Link)

[9] A. Suciu and T. Carean, "Benchmarking the True Random Number Generator of TPM Chips,"
arXiv:1008.2223, Aug, 2010. Article (CrossRef Link)

[10] Trusted Computing Group, “TPM Main Specification Level 2 (PDF), Part 1 – Design Principles
(Version 1.2, Revision 116 ed.),” Trusted Computing Group, 2012. Article (CrossRef Link)

[11] Trusted Computing Group, "tspi_data_bind(3) – Encrypts data blob," Trusted Computing
Group, 2009. Article (CrossRef Link)

[12] Trusted Computing Group, “TPM Main Specification Level 2 (PDF), Part 3 – Commands
(Version 1.2, Revision 116 ed.),” Trusted Computing Group, 2011. Article (CrossRef Link)

[13] Trusted Computing Group, "TPM – Trusted Platform Module," IBM, 2016.
Article (CrossRef Link)

https://doi.org/10.1145/378993.379239
https://doi.org/10.1109/HOTOS.2001.990064
https://doi.org/10.1145/1060289.1060291
http://dl.acm.org/citation.cfm?id=1251214&dl=ACM&coll=DL&CFID=986611675&CFTOKEN=60447410%23URLTOKEN
https://doi.org/10.1145/1456469.1456474
https://www.iso.org/standard/50970.html
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/tpm-library-specification/
https://arxiv.org/abs/1008.2223
https://trustedcomputinggroup.org/tpm-main-specification/
https://linux.die.net/man/3/tspi_data_bind
https://trustedcomputinggroup.org/tpm-main-specification/
https://web.archive.org/web/20160803203400/http:/www-01.ibm.com/support/docview.wss?uid=pos1R1003970&aid=1

452 Mugisha et al: A Reliable Secure Storage Cloud and Data Migration Based on Erasure Code
[14] US Department of Defense, “Instruction 8500.01 (PDF),” US Department of Defense, pp.43,

2014. Article (CrossRef Link)
[15] LUKS, “LUKS Support for storing keys in TPM NVRAM," 2013. Article (CrossRef Link)
[16] RIZZO, L. “Effective erasure codes for reliable computer communication protocols,” ACM

SIGCOMM Computer Communication Review, vol. 27, No. 2, pp. 24–36, 1997.
Article (CrossRef Link)

[17] Reed. I. S., and Solomon, G, “Polynomial codes over certain finite fields,” Journal of the
Society for Industrial and Applied Mathematics, vol. 8, No. 2, pp. 300–304, 1960.
Article (CrossRef Link)

[18] H. Abu-Libdeh et al. “Racs”, Proceedings of the 1st ACM symposium on Cloud computing -
SoCC ’10, p. 229 – 240, 2010. Article (CrossRef Link).

[19] D.R. Brownbridge, L.F. Marshall and B. Randell, “The Newcastle Connection or Unixes of the
World Unite,” Software Practice and Experience, vol. 12, no. 12, pp. 1147-1162, 1982.
Article (CrossRef Link)

[20] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, “Design and Implementation of
the Sun Network Filesystem,” in Proc. USENIX Assoc. Conf, 1985. Article (CrossRef Link)

[21] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang and K. Fu, “Plutus: Scalable Secure File
Sharing on Untrusted Storage,” in Proc. of Second USENIX Conf. File and Storage
Technologies (FAST), pp. 29- 42, 2003. Article (CrossRef Link)

[22] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao and J. Kubiatowicz, “Pond: The
Oceanstore Prototype,” in Proc. of Second USENIX Conf. File and Storage Technologies
(FAST), pp. 1-14, 2003. Article (CrossRef Link)

[23] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage and G.M. Voelker, “Total Recall: System Support
for Automated Availability Management,” in Proc. First Symp. Networked Systems Design and
Implementation (NSDI), pp. 337-350, 2004. Article (CrossRef Link)

[24] A.G. Dimakis, V. Prabhakaran and K. Ramchandran, “Ubiquitous Access to Distributed Data in
Large-Scale Sensor Networks through Decentralized Erasure Codes,” in Proc. Fourth Int’l
Symp. Information Processing in Sensor Networks (IPSN), pp. 111- 117, 2005.
Article (CrossRef Link)

[25] A.G. Dimakis, V. Prabhakaran and K. Ramchandran, “Decentralized Erasure Codes for
Distributed Networked Storage,” IEEE Trans. Information Theory, vol. 52, no. 6, pp.
2809-2816, June 2006. Article (CrossRef Link)

[26] H. Y. Lin and W. G. Tzeng, “A Secure Decentralized Erasure Code for Distributed Network
Storage,” IEEE Trans. Parallel and Distributed Systems, vol. 21, no. 11, pp. 1586-1594, Nov.
2010. Article (CrossRef Link)

[27] A. Mehmood, H. Song and J. Lloret, “Multi-Agent based Framework for Secure and
Reliable Communication among Open Clouds,” Network Protocols and Algorithms, Vol. 6, no.
4, pp. 60-76, 2014. Article (CrossRef Link)

[28] E. Baccarelli, N. Cordeschi, A. Mei, M. Panella, M. Shojafar, and J. Stefa, “Energy-Efficient
Dynamic Traffic Offloading and Reconfiguration of Networked Data Centers for Big Data
Stream Mobile Computing: Review, Challenges, and a Case Study,” IEEE Network, vol. 30, no.
2, pp. 54-61, 2016. Article (CrossRef Link)

[29] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H. Abawajy, “Fog of
Everything: Energy-Efficient Networked Computing Architectures, Research Challenges, and a
Case Study,” Access IEE, Vol.5, pp. 9882-9910, 2017. Article (CrossRef Link)

https://fas.org/irp/doddir/dod/i8500_01.pdf
https://github.com/shpedoikal/tpm-luks
https://doi.org/10.1145/263876.263881
https://doi.org/10.1137/0108018
http://portal.acm.org/citation.cfm?doid=1807128.1807165
https://doi.org/10.1002/spe.4380121206
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.473
https://www.usenix.org/legacy/publications/library/proceedings/fast03/tech/full_papers/kallahalla/kallahalla_html/main.html
http://oceanstore.cs.berkeley.edu/publications/papers/pdf/fast2003-pond.pdf
http://cseweb.ucsd.edu/%7Evoelker/pubs/recall-nsdi04.pdf
https://doi.org/10.1109/IPSN.2005.1440909
https://doi.org/10.1109/TIT.2006.874535
https://doi.org/10.1109/TPDS.2010.27
https://doi.org/10.5296/npa.v6i4.6028
https://doi.org/10.1109/MNET.2016.7437025
https://doi.org/10.1109/ACCESS.2017.2702013

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 453

[30] Y.C. Chen, Y. S. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and D. Towsley, ‘‘A
measurement-based study of multipath TCP performance over wireless networks,’’ in Proc. of
Conf. Internet Meas. Conf, pp. 455–468, 2013. Article (CrossRef Link)

[31] F. D. Costa and et al, “Rethinking Internet Things: A Scalable Approach to Connecting
Everything,” New York, NY, USA: Apress, 2013. Article (CrossRef Link)

[32] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson and D. Song, “Provable
Data Possession at Untrusted Stores,” in Proc. of 14th ACM Conf. Computer and Comm.
Security (CCS), pp. 598-609, 2007. Article (CrossRef Link)

[33] G. Ateniese, R.D. Pietro, L.V. Mancini and G. Tsudik, “Scalable and Efficient Provable Data
Possession,” in Proc. of Fourth Int’l Conf. Security and Privacy in Comm. Netowrks
(SecureComm), pp. 1-10, 2008. Article (CrossRef Link)

[34] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” in Proc. of 14th Int’l Conf.
Theory and Application of Cryptology and Information Security (ASIACRYPT), pp. 90-107,
2008. Article (CrossRef Link)

[35] G. Ateniese, S. Kamara and J. Katz, “Proofs of Storage from Homomorphic Identification
Protocols,” in Proc. of 15th Int’l Conf. Theory and Application of Cryptology and Information
Security (ASIACRYPT), pp. 319-333, 2009. Article (CrossRef Link)

[36] K.D. Bowers, A. Juels and A. Oprea, “HAIL: A High-Availability and Integrity Layer for
Cloud Storage,” in Proc. of 16th ACM Conf. Computer and Comm. Security (CCS), pp. 187-198,
2009. Article (CrossRef Link)

[37] C. Wang, Q. Wang, K. Ren and W. Lou, “Privacy-Preserving Public Auditing for Data Storage
Security in Cloud Computing,” in Proc. of IEEE 29th Int’l Conf. Computer Comm.
(INFOCOM), pp. 525-533, 2010. Article (CrossRef Link)

Emmy Mugisha is a Ph.D (Computer Science and Engineering) student at University
of Science and Technology. He attained his MSc (Computer Science and Technology)
degree in 2014 from Nanjing University of Information Science and Technology, China;
Bachelor degree from University of Rwanda in 2012. He published three papers (1 SCI
and 2 EI) in Cloud Computing, Trusted Computing, Information Security, Distributed
Computing, Big Data, Provenance Systems and Web Services.

Zhang Gongxuan is a Professor at Nanjing University Science and Technology,
School of Computer Science and Engineering. He attained his Ph.D and MSc (Computer
Science) degrees in 2005 and 1991 respectively from Nanjing University of Science and
Technology, China and Bachelor degree in Computer Science from Tianjin University
in 1983. He serves as Deputy Director of ACM Chinese Computer Architecture; IEEE
Senior member. He has published more than 60 papers (10 SCI/E and more than 20 EI).
His areas of interests are Web Services and Distributed Computing, Trusted Computing
and Information Security, Multi-core and High-performance Computing Technology,
Networking and Cloud Computing Technology.

https://doi.org/10.1145/2504730.2504751
https://www.apress.com/us/book/9781430257400
https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1145/1460877.1460889
https://doi.org/10.1007/978-3-540-89255-7_7
https://doi.org/10.1007/978-3-642-10366-7_19
https://doi.org/10.1145/1653662.1653686
https://doi.org/10.1109/INFCOM.2010.5462173

