• Title/Summary/Keyword: Information processing knowledge

Search Result 1,093, Processing Time 0.026 seconds

Update Semantic Preserving Object-Oriented View (갱신 의미 보존 객체-지향 뷰)

  • 나영국
    • The KIPS Transactions:PartD
    • /
    • v.8D no.1
    • /
    • pp.32-43
    • /
    • 2001
  • Due to the limitation of data modeling power and the view update ambiguity, relational view is limitedly used for engineering applications. On the contrary, object-oriented database view would playa vital role in defining custom interface for engineering applications because the above two limitations of the relational view are overcome by the object-oriented view. Above all, engineering application data interface should fully support updates. More specifically, updates against the data interface needs to be unambiguously defined and its semantic behavior should be equal to base schema updates'. For this purpose, we define the notion of update semantic preserving which means that view updates displays the same semantics as base schema. Besides, in order to show the feasibility of this characteristics, specific and concrete algorithms for update preserving updates are presented for a CAD specialized object-oriented database view - MultiView. This paper finds that in order that virtual classes coudld form a schema with 'isa' relationships rather than just a group of classes, the update semantics on the virtual classes should be defined such that the implied meaning of 'isa' relationships between classes are not to be violated. Besides, as its sufficiency conditions, we derived the update semantics and schema constituable conditions of the virtual classes that make view schemas look like base schemas. To my best knowledge, this is the first research that presents the sufficiency conditions by which we could defined object-oriented views as integrated schemas rather than as separate classes.

  • PDF

Generating Rank-Comparison Decision Rules with Variable Number of Genes for Cancer Classification (순위 비교를 기반으로 하는 다양한 유전자 개수로 이루어진 암 분류 결정 규칙의 생성)

  • Yoon, Young-Mi;Bien, Sang-Jay;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.767-776
    • /
    • 2008
  • Microarray technology is extensively being used in experimental molecular biology field. Microarray experiments generate quantitative expression measurements for thousands of genes simultaneously, which is useful for the phenotype classification of many diseases. One of the two major problems in microarray data classification is that the number of genes exceeds the number of tissue samples. The other problem is that current methods generate classifiers that are accurate but difficult to interpret. Our paper addresses these two problems. We performed a direct integration of individual microarrays with same biological objectives by transforming an expression value into a rank value within a sample and generated rank-comparison decision rules with variable number of genes for cancer classification. Our classifier is an ensemble method which has k top scoring decision rules. Each rule contains a number of genes, a relationship among involved genes, and a class label. Current classifiers which are also ensemble methods consist of k top scoring decision rules. However these classifiers fix the number of genes in each rule as a pair or a triple. In this paper we generalized the number of genes involved in each rule. The number of genes in each rule is in the range of 2 to N respectively. Generalizing the number of genes increases the robustness and the reliability of the classifier for the class prediction of an independent sample. Also our classifier is readily interpretable, accurate with small number of genes, and shed a possibility of the use in a clinical setting.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

A Study on the Optimization of State Tying Acoustic Models using Mixture Gaussian Clustering (혼합 가우시안 군집화를 이용한 상태공유 음향모델 최적화)

  • Ann, Tae-Ock
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.167-176
    • /
    • 2005
  • This paper describes how the state tying model based on the decision tree which is one of Acoustic models used for speech recognition optimizes the model by reducing the number of mixture Gaussians of the output probability distribution. The state tying modeling uses a finite set of questions which is possible to include the phonological knowledge and the likelihood based decision criteria. And the recognition rate can be improved by increasing the number of mixture Gaussians of the output probability distribution. In this paper, we'll reduce the number of mixture Gaussians at the highest point of recognition rate by clustering the Gaussians. Bhattacharyya and Euclidean method will be used for the distance measure needed when clustering. And after calculating the mean and variance between the pair of lowest distance, the new Gaussians are created. The parameters for the new Gaussians are derived from the parameters of the Gaussians from which it is born. Experiments have been performed using the STOCKNAME (1,680) databases. And the test results show that the proposed method using Bhattacharyya distance measure maintains their recognition rate at $97.2\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. And the method using Euclidean distance measure shows that it maintains the recognition rate at $96.9\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. Then the methods can optimize the state tying model.

Analysis and Prediction of Power Consumption Pattern Using Spatiotemporal Data Mining Techniques in GIS-AMR System (GIS-AMR 시스템에서 시공간 데이터마이닝 기법을 이용한 전력 소비 패턴의 분석 및 예측)

  • Park, Jin-Hyoung;Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.307-316
    • /
    • 2009
  • In this paper, the spatiotemporal data mining methodology for detecting a cycle of power consumption pattern with the change of time and spatial was proposed, and applied to the power consumption data collected by GIS-AMR system with an aim to use its resulting knowledge in real world applications. First, partial clustering method was applied for cluster analysis concerned with the aim of customer's power consumption. Second, the patterns of customer's power consumption data which contain time and spatial attribute were detected by 3D cube mining method. Third, using the calendar pattern mining method for detection of cyclic patterns in the various time domains, the meanings and relationships of time attribute which is previously detected patterns were analyzed and predicted. For the evaluation of the proposed spatiotemporal data mining, we analyzed and predicted the power consumption patterns included the cycle of time and spatial feature from total 266,426 data of 3,256 customers with high power consumption from Jan. 2007 to Apr. 2007 supported by the GIS-AMR system in KEPRI. As a result of applying the proposed analysis methodology, cyclic patterns of each representative profiles of a group is identified on time and location.

An Efficient Clustering Algorithm based on Heuristic Evolution (휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘)

  • Ryu, Joung-Woo;Kang, Myung-Ku;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.80-90
    • /
    • 2002
  • Clustering is a useful technique for grouping data points such that points within a single group/cluster have similar characteristics. Many clustering algorithms have been developed and used in engineering applications including pattern recognition and image processing etc. Recently, it has drawn increasing attention as one of important techniques in data mining. However, clustering algorithms such as K-means and Fuzzy C-means suffer from difficulties. Those are the needs to determine the number of clusters apriori and the clustering results depending on the initial set of clusters which fails to gain desirable results. In this paper, we propose a new clustering algorithm, which solves mentioned problems. In our method we use evolutionary algorithm to solve the local optima problem that clustering converges to an undesirable state starting with an inappropriate set of clusters. We also adopt a new measure that represents how well data are clustered. The measure is determined in terms of both intra-cluster dispersion and inter-cluster separability. Using the measure, in our method the number of clusters is automatically determined as the result of optimization process. And also, we combine heuristic that is problem-specific knowledge with a evolutionary algorithm to speed evolutionary algorithm search. We have experimented our algorithm with several sets of multi-dimensional data and it has been shown that one algorithm outperforms the existing algorithms.

The hybrid of artificial neural networks and case-based reasoning for intelligent diagnosis system (인공 신경경망과 사례기반추론을 혼합한 지능형 진단 시스템)

  • Lee, Gil-Jae;Kim, Chang-Joo;Ahn, Byung-Ryul;Kim, Moon-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.45-52
    • /
    • 2008
  • As the recent development of the IT services, there is a urgent need of effective diagnosis system to present appropriate solution for the complicated problems of breakdown control, a cause analysis of breakdown and others. So we propose an intelligent diagnosis system that integrates the case-based reasoning and the artificial neural network to improve the system performance and to achieve optimal diagnosis. The case-based reasoning is a reasoning method that resolves the problems presented in current time through the past cases (experience). And it enables to make efficient reasoning by means of less complicated knowledge acquisition process, especially in the domain where it is difficult to extract formal rules. However, reasoning by using the case-based reasoning alone in diagnosis problem domain causes a problem of suggesting multiple causes on a given symptom. Since the suggested multiple causes of given symptom has the same weight, the unnecessary causes are also examined as well. In order to resolve such problems, the back-propagation learning algorithm of the artificial neural network is used to train the pairs of the causes and associated symptoms and find out the cause with the highest weight for occurrence to make more clarified and reliable diagnosis.

A Visual Programming Environment on Tablet PCs to Control Industrial Robots (산업용 로봇 제어를 위한 태블릿 PC 기반의 비주얼 프로그래밍 연구)

  • Park, Eun Ji;Seo, Kyeong Eun;Park, Tae Gon;Sun, Duk Han;Cho, Hyeonjoong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Industrial robots have been usually controlled using text-based programming languages provided by each manufacturer with its button-based TP(Teaching Pendent) terminal. Unfortunately, when we consider that people who manipulate TPs in manufacturing sites are mostly unskilled with no background knowledge about computer programming, these text-based programming languages using button-based interaction on manufacturing sites are too difficult for them to learn and use. In order to overcome the weaknesses of the text-based programming language, we propose a visual programming language that can be easily used on gesture-enabled devices. Especially, in our visual programming environment, each command is represented as a block and robots are controlled by stacking those blocks using drag-and-drop gestures, which is easily learnable even by beginners. In this paper, we utilize a widely-spread device, Tablet PC as the gesture-enabled TP. Considering that Tablet PC has limited display space in contrast to PC environments, we designed different kinds of sets of command blocks and conducted user tests. Based on the experiment results, we propose an effective set of command blocks for Tablet PC environment.

Classification of BcN Vulnerabilities Based on Extended X.805 (X.805를 확장한 BcN 취약성 분류 체계)

  • Yoon Jong-Lim;Song Young-Ho;Min Byoung-Joon;Lee Tai-Jin
    • The KIPS Transactions:PartC
    • /
    • v.13C no.4 s.107
    • /
    • pp.427-434
    • /
    • 2006
  • Broadband Convergence Network(BcN) is a critical infrastructure to provide wired-and-wireless high-quality multimedia services by converging communication and broadcasting systems, However, there exist possible danger to spread the damage of an intrusion incident within an individual network to the whole network due to the convergence and newly generated threats according to the advent of various services roaming vertically and horizontally. In order to cope with these new threats, we need to analyze the vulnerabilities of BcN in a system architecture aspect and classify them in a systematic way and to make the results to be utilized in preparing proper countermeasures, In this paper, we propose a new classification of vulnerabilities which has been extended from the ITU-T recommendation X.805, which defines the security related architectural elements. This new classification includes system elements to be protected for each service, possible attack strategies, resulting damage and its criticalness, and effective countermeasures. The new classification method is compared with the existing methods of CVE(Common Vulnerabilities and Exposures) and CERT/CC(Computer Emergency Response Team/Coordination Center), and the result of an application to one of typical services, VoIP(Voice over IP) and the development of vulnerability database and its management software tool are presented in the paper. The consequence of the research presented in the paper is expected to contribute to the integration of security knowledge and to the identification of newly required security techniques.

Semantic Computing-based Dynamic Job Scheduling Model and Simulation (시멘틱 컴퓨팅 기반의 동적 작업 스케줄링 모델 및 시뮬레이션)

  • Noh, Chang-Hyeon;Jang, Sung-Ho;Kim, Tae-Young;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.29-38
    • /
    • 2009
  • In the computing environment with heterogeneous resources, a job scheduling model is necessary for effective resource utilization and high-speed data processing. And, the job scheduling model has to cope with a dynamic change in the condition of resources. There have been lots of researches on resource estimation methods and heuristic algorithms about how to distribute and allocate jobs to heterogeneous resources. But, existing researches have a weakness for system compatibility and scalability because they do not support the standard language. Also, they are impossible to process jobs effectively and deal with a variety of computing situations in which the condition of resources is dynamically changed in real-time. In order to solve the problems of existing researches, this paper proposes a semantic computing-based dynamic job scheduling model that defines various knowledge-based rules for job scheduling methods adaptable to changes in resource condition and allocate a job to the best suited resource through inference. This paper also constructs a resource ontology to manage information about heterogeneous resources without difficulty as using the OWL, the standard ontology language established by W3C. Experimental results shows that the proposed scheduling model outperforms existing scheduling models, in terms of throughput, job loss, and turn around time.