• Title/Summary/Keyword: Information generating function

Search Result 260, Processing Time 0.028 seconds

A Selecting-Ordering-Mapping-Searching Approach for Minimal Perfect Hash Functions (최소 완전 해쉬 함수를 위한 선택-순서화-사상-탐색 접근 방법)

  • Lee, Ha-Gyu
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.41-49
    • /
    • 2000
  • This paper describes a method of generating MPHFs(Minimal Perfect Hash Functions) for large static search key sets. The MOS(Mapping-Ordering-Searching) approach is widely used presently in MPHF generation. In this research, the MOS approach is improved and a SOMS(Selecting-Ordering-Mapping-Searching) approach is proposed, where the Selecting step is newly introduced and the Orderng step is performed before the Mapping step to generate MPHFs more effectively. The MPHF generation algorithm proposed in this research is probabilistic and the expected processing time is linear to the number of keys. Experimental results show that MPHFs are generated fast and the space needed to represent the hash functions is small.

  • PDF

Performance Analysis of a Cellular Mobile Communication System with Hybrid Guard Channels (Hybrid 가드채널이 있는 이동통신시스템이 성능 평가)

  • Hong, Sung-Jo;Choi, Jin-Yeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.4
    • /
    • pp.100-106
    • /
    • 2006
  • We analyze a voice/data integrated traffic model of the cellular mobile communication system with hybrid guard channels for voice and handoff calls. In a multi-service integrated wireless environment, quality of service guarantee is crucial for smooth transportation of real time information. Real time voice traffic requires a guaranteed upper bounded on both delay and packet error rate, whereas data traffic does not. Voice traffic has high transmission priority over data packets. Thus one of the important problems is the design of admission control schemes which can efficiently accommodate the differential quality of service requirements. In this paper, a hybrid guard channel scheme is considered in which arriving calls are assigned channels as long as the number of busy channels in the cell is below a predetermined first threshold. When the number of busy channels reaches the first threshold, new originating data calls are queued in the infinite data buffer. Then reaches second threshold, only handoff calls are assigned the remaining channels and new originating voice calls are blocked. We evaluate the system by a two-dimensional Markov chain approach and generating function method and obtain performance measures included blocking probability and forced termination probability.

Is ChatGPT a "Fire of Prometheus" for Non-Native English-Speaking Researchers in Academic Writing?

  • Sung Il Hwang;Joon Seo Lim;Ro Woon Lee;Yusuke Matsui;Toshihiro Iguchi;Takao Hiraki;Hyungwoo Ahn
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.952-959
    • /
    • 2023
  • Large language models (LLMs) such as ChatGPT have garnered considerable interest for their potential to aid non-native English-speaking researchers. These models can function as personal, round-the-clock English tutors, akin to how Prometheus in Greek mythology bestowed fire upon humans for their advancement. LLMs can be particularly helpful for non-native researchers in writing the Introduction and Discussion sections of manuscripts, where they often encounter challenges. However, using LLMs to generate text for research manuscripts entails concerns such as hallucination, plagiarism, and privacy issues; to mitigate these risks, authors should verify the accuracy of generated content, employ text similarity detectors, and avoid inputting sensitive information into their prompts. Consequently, it may be more prudent to utilize LLMs for editing and refining text rather than generating large portions of text. Journal policies concerning the use of LLMs vary, but transparency in disclosing artificial intelligence tool usage is emphasized. This paper aims to summarize how LLMs can lower the barrier to academic writing in English, enabling researchers to concentrate on domain-specific research, provided they are used responsibly and cautiously.

A Development of Synthetic Map Preprocessor for Mobile GIS Visualization based on GML (GML 기반 모바일 GIS 가시화를 위한 Synthetic Map Preprocessor 구축)

  • Song Eun-Ha;Park Yong-Jin;Han Sung-Kook;Jeong Young-Sik
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.383-388
    • /
    • 2006
  • Most of GIS services have been operated in single applications, and as data processing and computer and mobile technologies have developed rapidly, users request for efficient sharing between each GIS's own data and various different GIS's. However, since many GIS applications maintain their own data formats, they are incapable of processing data formats different with each other, and do not have a filtering function for mobile GIS. This paper designs an integrated preprocessor, SMP to accept features of various current formats of geographic information such as DXF(Drawing eXchange Format), DWG(DraWinG), SHP(SHaPefile), etc., and to extract core information for describing maps. The geographic information extracted by SMP(Synthetic Map Preprocessor) shows consistency in various formats by visualizing through the integrated view. By generating the extracted core data in GML, it supports rapid access to mobile devices and extensibility of file formats overcoming heterogeneity.

A Scheme of Improving Propagation Attack Protection and Generating Convergence Security Token using Moire (무아레를 이용한 융합 보안토큰생성과 전파공격 보호 기법)

  • Lee, Su-Yeon;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.7-11
    • /
    • 2019
  • Due to diversification and popularization of devices that use rapid transmission, there are many security issues related to radio waves. As the disturbance and interference of the radio wave can cause a direct inconvenience to a life, it is a very important issue. In this paper, as a means to prevent radio disturbance and interference, the projected image of the reference grid and the deformed grid is obtained by measuring the projected $moir{\acute{e}}$ using the white light source, projecting grid and the light source, and a $moir{\acute{e}}$ pattern is generated with an image processing algorithm by applying a phase diagram algorithm, and generated $moir{\acute{e}}$ pattern phase diagram creates a three-dimensional shape. By making an encrypted token using this measured face shape, the transmission of the information through token ring is determined in order to transmit the horizontal transmission having the dynamic security characteristics which includes authentication strength and caller information, etc. And by confirming the uniqueness of the token and by sending and receiving the horizontal transmission using java serialization and deserialization function, a problem solving method is suggested.

The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM (다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형)

  • Park, Ji-Young;Hong, Tae-Ho
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.

User-Guidable Abstract Line Drawing of 2D Images (사용자 제어가 용이한 이차원 영상의 추상화된 라인 드로잉 생성)

  • Son, Min-Jung;Lee, Yun-Jin;Kang, Hen-Ry;Lee, Seung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.110-125
    • /
    • 2010
  • We present a novel scheme for generating line drawings from 2D images, aiming to facilitate effective visual communication. In contrast to conventional edge detectors, our technique imitates the human line drawing process to generate lines effectively and intuitively. Our technique consists of three parts: line extraction, line rendering, and user guidance. In line extraction, we extract lines by estimating a likelihood function to effectively find the genuine shape boundaries. In line rendering, we consider the feature scale and the blurriness of lines with which the detail and the focus-level of lines are controlled. We also employ stroke textures to provide a variety of illustration styles. User guidance is allowed to modify the shapes and positions of lines interactively, where immediate response is provided by GPU implementation of most line extraction operations. Experimental results demonstrate that our technique generates various kinds of line drawings from 2D images enabled by the control over detail, focus, and style.

Line Drawings from 2D Images (이차원 영상의 라인 드로잉)

  • Son, Min-Jung;Lee, Seung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.665-682
    • /
    • 2007
  • Line drawing is a widely used style in non-photorealistic rendering because it generates expressive descriptions of object shapes with a set of strokes. Although various techniques for line drawing of 3D objects have been developed, line drawing of 2D images has attracted little attention despite interesting applications, such as image stylization. This paper presents a robust and effective technique for generating line drawings from 2D images. The algorithm consists of three parts; filtering, linking, and stylization. In the filtering process, it constructs a likelihood function that estimates possible positions of lines in an image. In the linking process, line strokes are extracted from the likelihood function using clustering and graph search algorithms. In the stylization process, it generates various kinds of line drawings by applying curve fitting and texture mapping to the extracted line strokes. Experimental results demonstrate that the proposed technique can be applied to the various kinds of line drawings from 2D images with detail control.

Concept Optimization for Mechanical Product Using Genetic Algorithm

  • Huang Hong Zhong;Bo Rui Feng;Fan Xiang Feng
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1072-1079
    • /
    • 2005
  • Conceptual design is the first step in the overall process of product design. Its intrinsic uncertainty, imprecision, and lack of information lead to the fact that current conceptual design activities in engineering have not been computerized and very few CAD systems are available to support conceptual design. In most of the current intelligent design systems, approach of principle synthesis, such as morphology matrix, bond graphic, or design catalogues, is usually adopted to deal with the concept generation, in which optional concepts are generally combined and enumerated through function analysis. However, as a large number of concepts are generated, it is difficult to evaluate and optimize these design candidates using regular algorithm. It is necessary to develop a new approach or a tool to solve the concept generation. Generally speaking, concept generation is a problem of concept synthesis. In substance, this process of developing design candidate is a combinatorial optimization process, viz., the process of concept generation can be regarded as a solution for a state-place composed of multi-concepts. In this paper, genetic algorithm is utilized as a feasible tool to solve the problem of combinatorial optimization in concept generation, in which the encoding method of morphology matrix based on function analysis is applied, and a sequence of optimal concepts are generated through the search and iterative process which is controlled by genetic operators, including selection, crossover, mutation, and reproduction in GA. Several crucial problems on GA are discussed in this paper, such as the calculation of fitness value and the criteria for heredity termination, which have a heavy effect on selection of better concepts. The feasibility and intellectualization of the proposed approach are demonstrated with an engineering case. In this work concept generation is implemented using GA, which can facilitate not only generating several better concepts, but also selecting the best concept. Thus optimal concepts can be conveniently developed and design efficiency can be greatly improved.

Adaptive prototype generating technique for improving performance of a p-Snake (p-Snake의 성능 향상을 위한 적응 원형 생성 기법)

  • Oh, Seung-Taek;Jun, Byung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2757-2763
    • /
    • 2015
  • p-Snake is an energy minimizing algorithm that applies an additional prototype energy to the existing Active Contour Model and is used to extract the contour line in the area where the edge information is unclear. In this paper suggested the creation of a prototype energy field that applies a variable prototype expressed as a combination of circle and straight line primitives, and a fudge function, to improve p-Snake's contour extraction performance. The prototype was defined based on the parts codes entered and the appropriate initial contour was extracted in each primitive zones acquired from the pre-processing process. Then, the primitives variably adjusted to create the prototype and the contour probability based on the distance to the prototype was calculated through the fuzzy function to create the prototype energy field. This was applied to p-Snake to extract the contour from 100 images acquired from various small parts and compared its similarity with the prototype to find that p-Snake made with the adaptive prototype was about 4.6% more precise than the existing Snake method.