• 제목/요약/키워드: Information classification

검색결과 8,432건 처리시간 0.043초

Image classification methods applicable multiple satellite imagery

  • Jeong, Jae-Jun;Kim, Kyung-Ok;Lee, Jong-Hun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.81-81
    • /
    • 2002
  • Classification is considered as one of the processes of extracting attributes from satellite imagery and is one of the usual functions in the commercial satellite image processing software. Accuracy of classification plays a key role in deciding the usage of its results. Many tremendous efforts far the higher accuracy have been done in such fields; training area selection, classification algorithm. Our research is one of these effort in different manners. In this research, we conduct classification using multiple satellite image data and evidential approach. We statistically consider the posterior probabilities and certainty in maximum likelihood classification and methodologically Dempster's orthogonal sums. Unfortunately, accuracy for the whole data sets has not assessed yet, but accuracy assessments in training fields and check fields shows accuracy improvement over 10% in overall accuracy and over 0.1 in kappa index.

  • PDF

Music Genre Classification Based on Timbral Texture and Rhythmic Content Features

  • Baniya, Babu Kaji;Ghimire, Deepak;Lee, Joonwhon
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.204-207
    • /
    • 2013
  • Music genre classification is an essential component for music information retrieval system. There are two important components to be considered for better genre classification, which are audio feature extraction and classifier. This paper incorporates two different kinds of features for genre classification, timbral texture and rhythmic content features. Timbral texture contains several spectral and Mel-frequency Cepstral Coefficient (MFCC) features. Before choosing a timbral feature we explore which feature contributes less significant role on genre discrimination. This facilitates the reduction of feature dimension. For the timbral features up to the 4-th order central moments and the covariance components of mutual features are considered to improve the overall classification result. For the rhythmic content the features extracted from beat histogram are selected. In the paper Extreme Learning Machine (ELM) with bagging is used as classifier for classifying the genres. Based on the proposed feature sets and classifier, experiment is performed with well-known datasets: GTZAN databases with ten different music genres, respectively. The proposed method acquires the better classification accuracy than the existing approaches.

우리나라의 현행 의약품분류체계에 대한 고찰 및 개선 방안 (Current Drug Classification System in Korea and Its Improvement)

  • 손현순;오옥희;김종주;이소현;변선혜;신현택
    • 한국임상약학회지
    • /
    • 제15권2호
    • /
    • pp.139-148
    • /
    • 2005
  • Appropriate drug classification is important fur rational drug consumption. This study was conducted to evaluate the appropriateness of current drug classification system and suggest possible ways for improving the system. Nonprescription drug market has been decreased. Since total 27,962 products had been classified (prescription 17,187 vs. nonprescription 10,775 products, 61.5% vs. 38.5%) in July 2000 for implementing separation of drug prescribing and dispensing system, there are no classification changes. Reclassification is not motivated by product holder and regulatory system did not lead classification change either. Consumers' ease access to some nonprescription drugs is demanded. But point of public awareness and cultural and health environmental views, saff drug use rather than advantages from broad supply of nonprescription drugs is more critical. We concluded that current 2-categorized (prescription and nonprescription) drug classification system is appropriate, and addition of general sale category should be approached carefully with long term Preparations such as establishment of better nonprescription drug consuming infrastructure by public information provision and education for improving public medicinal knowledge and strengthening self medication guidance, and review of current classification status of marketed drugs and switching possibilities. For systemizing and encouraging reclassification, introduction of regulatory renewal system as a continuous reevaluation program which is the best way to review appropriateness of drug classification as well as provision of detailed guidance for industry including policy, requirement and process fer reclassification application, are necessary.

  • PDF

퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법 (Selection Method of Fuzzy Partitions in Fuzzy Rule-Based Classification Systems)

  • 손창식;정환묵;권순학
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.360-366
    • /
    • 2008
  • 퍼지 규칙기반 분류 시스템에서 초기의 퍼지 분할은 주어진 데이터가 가진 속성들의 도메인을 고려함으로서 결정되어지고, 최적의 분류 경계면은 초기에 정의된 퍼지 분할의 파라미터들을 조정함으로서 찾을 수 있다. 본 논문에서는 학습과정들을 사용하지 않고 패턴분류의 성능을 최대화하기 위해 통계적 정보에 기반을 둔 퍼지 분할의 선택방법을 제안한다. 제안된 방법에서 통계적 정보는 주어진 수치적인 데이터로부터 각 입력 속성의 '불확실성 영역', 즉 패턴분류문제에서 분류 경계면이 결정되는 영역을 추출하기 위해 사용되었다. 또한 통계적인 정보에 의해서 생성된 퍼지 분할구간에 대응하는 후보 규칙들을 추출하기 위한 방법과 그 후보 규칙들 간의 커플링 문제를 최소화하기 위한 방법도 추가적으로 논의하였다. 실험에서는 제안된 방법의 효용성을 보이기 위해 IRIS와 New Thyroid Cancer 데이터를 사용한 기존 패턴분류 방법들과의 분류 정확성을 비교하였고, 그 결과들로부터 제안된 방법이 기존의 방법들보다 더 좋은 분류 정확성을 제공함을 확인할 수 있었다.

콜론분류법에 바탕한 자동분류시스템의 개발에 관한 연구 - 농학 및 의학 전문도서관을 사레로 - (Developing an Automatic Classification System Based on Colon Classification: with Special Reference to the Books housed in Medical and Agricultural Libraries)

  • 이경호
    • 한국문헌정보학회지
    • /
    • 제23권
    • /
    • pp.207-261
    • /
    • 1992
  • The purpose of this study is (1) to design and test a database which can be automatically classified, and (2) to generate automatic classification number by processing the keywords in titles using the code combination method of Colon Classification(CC) as well as an automatic recognition of subjects in order to develop an automatic classification system (Auto BC System) based on CC which can be applied to any research library. To conduct this study, 1,510 words in the fields of agricultrue and medicine were selected, analized in terms of [P], [M], [E], [S], [T] employed in CC, and included in a database for classification. For the above-mentioned subject fields, the principle of an automatic classification was specified in order to generate automatic classification codes as well as to perform an automatic subject recognition of the titles included. Whenever necessary, editing, deleting, appending and reindexing of a database can be made in this automatic classification system. Appendix 1 shows the result of the automatic classification of books in the fields of agriculture and medicine. The results of the study are summarized below. 1. The classification number for the title of a book can be automatically generated by using the facet principles of Colon Classification. 2. The automatic subject recognition of a book is achieved by designing a database making use of a globe-principle, and by specifying the subject field for each word. 3. The automatic subject-recognition of input data is achieved by measuring the number of searched words by each subject field. 4. The combination of classification numbers is achieved by flowcharting of classification formular of each subject field. 5. The efficient control of classification numbers is achieved by designing control codes on the database for classification. 6. The automatic classification by means of Auto BC has been proved to be successful in the research library concentrating on a Single field. The general library may have some problem in employing this system. The automatic classification through Auto BC has the following advantages: 1. Speed of the classification process can be improve. 2. The revision or updating of classification schemes can be facilitated. 3. Multiple concepts can be expressed in a single classification code. 4. The consistency of classification can be achieved with the classification formular rather than the classifier's subjective judgement. 5. A user's retrieving process can be made after combining the classification numbers through keywords relating to the material to be searched. 6. The materials can be classified by a librarian without subject backgrounds. 7. The large body of materials can be quickly classified by means of a machine processing. 8. This automatic classification is expected to make a good contribution to design of the total system for library operations. 9. The information flow among libraries can be promoted owing to the use of the same program for the automatic classification.

  • PDF

Issues and Empirical Results for Improving Text Classification

  • Ko, Young-Joong;Seo, Jung-Yun
    • Journal of Computing Science and Engineering
    • /
    • 제5권2호
    • /
    • pp.150-160
    • /
    • 2011
  • Automatic text classification has a long history and many studies have been conducted in this field. In particular, many machine learning algorithms and information retrieval techniques have been applied to text classification tasks. Even though much technical progress has been made in text classification, there is still room for improvement in text classification. In this paper, we will discuss remaining issues in improving text classification. In this paper, three improvement issues are presented including automatic training data generation, noisy data treatment and term weighting and indexing, and four actual studies and their empirical results for those issues are introduced. First, the semi-supervised learning technique is applied to text classification to efficiently create training data. For effective noisy data treatment, a noisy data reduction method and a robust text classifier from noisy data are developed as a solution. Finally, the term weighting and indexing technique is revised by reflecting the importance of sentences into term weight calculation using summarization techniques.

AUTOMATIC SELECTION AND ADJUSTMENT OF FEATURES FOR IMAGE CLASSIFICATION

  • Saiki, Kenji;Nagao, Tomoharu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.525-528
    • /
    • 2009
  • Recently, image classification has been an important task in various fields. Generally, the performance of image classification is not good without the adjustment of image features. Therefore, it is desired that the way of automatic feature extraction. In this paper, we propose an image classification method which adjusts image features automatically. We assume that texture features are useful in image classification tasks because natural images are composed of several types of texture. Thus, the classification accuracy rate is improved by using distribution of texture features. We obtain texture features by calculating image features from a current considering pixel and its neighborhood pixels. And we calculate image features from distribution of textures feature. Those image features are adjusted to image classification tasks using Genetic Algorithm. We apply proposed method to classifying images into "head" or "non-head" and "male" or "female".

  • PDF

Image Fusion for Improving Classification

  • Lee, Dong-Cheon;Kim, Jeong-Woo;Kwon, Jay-Hyoun;Kim, Chung;Park, Ki-Surk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1464-1466
    • /
    • 2003
  • classification of the satellite images provides information about land cover and/or land use. Quality of the classification result depends mainly on the spatial and spectral resolutions of the images. In this study, image fusion in terms of resolution merging, and band integration with multi-source of the satellite images; Landsat ETM+ and Ikonos were carried out to improve classification. Resolution merging and band integration could generate imagery of high resolution with more spectral bands. Precise image co-registration is required to remove geometric distortion between different sources of images. Combination of unsupervised and supervised classification of the fused imagery was implemented to improve classification. 3D display of the results was possible by combining DEM with the classification result so that interpretability could be improved.

  • PDF

텍스트 분류 기법의 발전 (Enhancement of Text Classification Method)

  • 신광성;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.155-156
    • /
    • 2019
  • Classification and Regression Tree (CART), SVM (Support Vector Machine) 및 k-nearest neighbor classification (kNN)과 같은 기존 기계 학습 기반 감정 분석 방법은 정확성이 떨어졌습니다. 본 논문에서는 개선 된 kNN 분류 방법을 제안한다. 개선 된 방법 및 데이터 정규화를 통해 정확성 향상의 목적이 달성됩니다. 그 후, 3 가지 분류 알고리즘과 개선 된 알고리즘을 실험 데이터에 기초하여 비교 하였다.

  • PDF

Comparison of wavelet-based decomposition and empirical mode decomposition of electrohysterogram signals for preterm birth classification

  • Janjarasjitt, Suparerk
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.826-836
    • /
    • 2022
  • Signal decomposition is a computational technique that dissects a signal into its constituent components, providing supplementary information. In this study, the capability of two common signal decomposition techniques, including wavelet-based and empirical mode decomposition, on preterm birth classification was investigated. Ten time-domain features were extracted from the constituent components of electrohysterogram (EHG) signals, including EHG subbands and EHG intrinsic mode functions, and employed for preterm birth classification. Preterm birth classification and anticipation are crucial tasks that can help reduce preterm birth complications. The computational results show that the preterm birth classification obtained using wavelet-based decomposition is superior. This, therefore, implies that EHG subbands decomposed through wavelet-based decomposition provide more applicable information for preterm birth classification. Furthermore, an accuracy of 0.9776 and a specificity of 0.9978, the best performance on preterm birth classification among state-of-the-art signal processing techniques, were obtained using the time-domain features of EHG subbands.