KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3663-3679
/
2020
Scheduling plays a dynamic role in cloud computing in generating as well as in efficient distribution of the resources of each task. The principle goal of scheduling is to limit resource starvation and to guarantee fairness among the parties using the resources. The demand for resources fluctuates dynamically hence the prearranging of resources is a challenging task. Many task-scheduling approaches have been used in the cloud-computing environment. Security in cloud computing environment is one of the core issue in distributed computing. We have designed a deep learning-based security model for scheduling tasks in cloud computing and it has been implemented using CloudSim 3.0 simulator written in Java and verification of the results from different perspectives, such as response time with and without security factors, makespan, cost, CPU utilization, I/O utilization, Memory utilization, and execution time is compared with Round Robin (RR) and Waited Round Robin (WRR) algorithms.
Cyber threats such as forced personal information collection and distribution of malicious codes using malicious URLs continue to occur. In order to cope with such cyber threats, a security technologies that quickly detects malicious URLs and prevents damage are required. In a web environment, malicious URLs have various forms and are created and deleted from time to time, so there is a limit to the response as a method of detecting or filtering by signature matching. Recently, researches on detecting and predicting malicious URLs using machine learning techniques have been actively conducted. Existing studies have proposed various features and machine learning algorithms for predicting malicious URLs, but most of them are only suggesting specialized algorithms by supplementing features and preprocessing, so it is difficult to sufficiently reflect the strengths of various machine learning algorithms. In this paper, a system for predicting malicious URLs using multiple machine learning algorithms was proposed, and an experiment was performed to combine the prediction results of multiple machine learning models to increase the accuracy of predicting malicious URLs. Through experiments, it was proved that the combination of multiple models is useful in improving the prediction performance compared to a single model.
International Journal of Computer Science & Network Security
/
제22권5호
/
pp.342-347
/
2022
On Cloud, the important data of the user that is protected on remote servers can be accessed via internet. Due to rapid shift in technology nowadays, there is a swift increase in the confidential and pivotal data. This comes up with the requirement of data security of the user's data. Data is of different type and each need discrete degree of conservation. The idea of data security data science permits building the computing procedure more applicable and bright as compared to conventional ones in the estate of data security. Our focus with this paper is to enhance the safety of data on the cloud and also to obliterate the problems associated with the data security. In our suggested plan, some basic solutions of security like cryptographic techniques and authentication are allotted in cloud computing world. This paper put your heads together about how machine learning techniques is used in data security in both offensive and defensive ventures, including analysis on cyber-attacks focused at machine learning techniques. The machine learning technique is based on the Supervised, UnSupervised, Semi-Supervised and Reinforcement Learning. Although numerous research has been done on this topic but in reference with the future scope a lot more investigation is required to be carried out in this field to determine how the data can be secured more firmly on cloud in respect with the Machine Learning Techniques and cryptographic methods.
정보통신기술의 발전과 지식정보 사회의 등장은 교육 및 훈련분야에도 거대한 변화를 가져왔다. 특히, 유비쿼터스 시대가 다가옴에 따라 e-Learning 또한 u-Learning으로 진화하려 하고 있다. 이는 지금까지와는 또 다른 형태로 교수-학습자 환경이 변화함을 말한다. 본 논문에서는 교육환경의 발전에 따른 다양한 학습 콘텐츠의 관리 방법을 제안, 구현하고 운영플랫폼 분석을 통하여 콘텐츠의 활용을 극대화 할 수 있는 LCMS를 제안하였다.
International Journal of Computer Science & Network Security
/
제23권11호
/
pp.83-92
/
2023
The majority of product users rely on the reviews that are posted on the appropriate website. Both users and the product's manufacturer could benefit from these reviews. Daily, thousands of reviews are submitted; how is it possible to read them all? Sentiment analysis has become a critical field of research as posting reviews become more and more common. Machine learning techniques that are supervised, unsupervised, and semi-supervised have worked very hard to harvest this data. The complicated and technological area of feature engineering falls within machine learning. Using deep learning, this tedious process may be completed automatically. Numerous studies have been conducted on deep learning models like LSTM, CNN, RNN, and GRU. Each model has employed a certain type of data, such as CNN for pictures and LSTM for language translation, etc. According to experimental results utilizing a publicly accessible dataset with reviews for all of the models, both positive and negative, and CNN, the best model for the dataset was identified in comparison to the other models, with an accuracy rate of 81%.
기하급수적으로 증가하고 있는 변종 악성코드에 대응하기 위해 악성코드 분류 연구가 다양화되고 있다. 최근 연구에서는 기존 악성코드 분석 기술 (정적/동적)의 개별 사용 한계를 파악하고, 각 방식을 혼합한 하이브리드 분석으로 전환하는 추세이다. 나아가, 분류가 어려운 변종 악성코드를 더욱 정확하게 식별하기 위해 기계학습을 적용하기에 이르렀다. 하지만, 각 방식을 모두 활용했을 때 발생하는 정확성, 확장성 트레이드오프 문제는 여전히 해결되지 못했으며, 학계에서 중요한 연구 주제이다. 이에 따라, 본 연구에서는 기존 악성코드 분류 연구들의 문제점을 보완하기 위해 새로운 악성코드 분류 시스템을 연구 및 개발한다.
최근 몇 년 동안 지속적으로 개인정보유출, 기술유출 사고가 빈번하게 발생하고 있다. 조사에 따르면 이러한 유출 사고의 주체로 가장 많은 부분을 차지하고 있는 것이 조직 내부에 있는 '내부자'로, 내부자에 의한 기술유출은 조직에 막대한 피해를 주기 때문에 점점 더 중요한 문제로 여겨지고 있다. 본 논문에서는 내부자위협을 방지하기 위해 기계학습을 이용하여 직원들의 일반적인 정상행위를 학습하고, 이에 벗어나는 비정상 행위를 탐지하기 방법에 대한 연구를 하고자 한다. Neural Network 모델 중 시계열 데이터의 학습에 적합한 Recurrent Neural Network로 구성한 Autoencoder를 구현하여 비정상 행위를 탐지하는 방법에 대한 실험을 진행하였고, 이 방법에 대한 유효성을 검증하였다.
악성코드 분석은 컴퓨터 보안의 중요한 관심사 중 하나로 분석 기법의 진보는 컴퓨터 보안의 중요 사항이 되었다. 기존에는 악성코드를 탐지할 때 Signature-based 방식을 사용하였으나 패킹된 악성코드의 비율이 높아지면서 기존 Signature-based 방식으로는 탐지에 어려움이 많아 졌다. 이에, 본 논문에서는 머신러닝을 사용하여 패킹된 프로그램의 패커를 식별하는 방법을 제안한다. 제안한 방법은 패킹된 프로그램을 파싱하여 패커를 특정 지을 수 있는 특정 PE 정보를 추출하고 머신러닝 모델 중 Adaptive Boosting 알고리즘을 사용하여 패커를 식별한다. 제안한 방법의 정확도를 확인하기 위해 12가지 종류의 패커로 패킹된 프로그램 391개를 수집하여 실험하였으며, 약 99.2%의 정확도로 패커를 식별하는 것을 알 수 있었다. 또한, Signature-based PE 식별 도구인 PEiD와 기존 머신러닝을 사용한 방법으로 식별한 결과를 제시하였으며, 본 논문에서 제안한 방법이 기존의 방법보다 패커를 식별하는데 정확도와 속도면에서 더 뛰어난 성능을 발휘하는 것을 알 수 있다.
With the success of the digital economy and the rapid development of its technology, network security has received increasing attention. Intrusion detection technology has always been a focus and hotspot of research. A hybrid model that combines particle swarm optimization (PSO) and kernel extreme learning machine (KELM) is presented in this work. Continuous-valued PSO and binary PSO (BPSO) are adopted together to determine the parameter combination and the feature subset. A fitness function based on the detection rate and the number of selected features is proposed. The results show that the method can simultaneously determine the parameter values and select features. Furthermore, competitive or better accuracy can be obtained using approximately one quarter of the raw input features. Experiments proved that our method is slightly better than the genetic algorithm-based KELM model.
International Journal of Computer Science & Network Security
/
제22권3호
/
pp.155-162
/
2022
Over the last 10 years, there has been rapid growth in the use of Machine Learning (ML) techniques to automate the process of intrusion threat detection at a scale never imagined before. This has prompted researchers, software engineers, and network specialists to rethink the applications of machine ML techniques particularly in the area of cybersecurity. As a result there exists numerous research documentations on the use ML techniques to detect and block cyber-attacks. This article is a systematic review involving the identification of published scholarly articles as found on IEEE Explore and Scopus databases. The articles exclusively related to the use of machine learning in Intrusion Detection Systems (IDS). Methods, concepts, results, and conclusions as found in the texts are analyzed. A description on the process taken in the identification of the research articles included: First, an introduction to the topic which is followed by a methodology section. A table is used to list identified research articles in the form of title, authors, methodology, and key findings.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.