• 제목/요약/키워드: Information Error

Search Result 11,147, Processing Time 0.035 seconds

BOUNDS OF ZERO MEAN GAUSSIAN WITH COVARIANCE FOR AVERAGE ERROR OF TRAPEZOIDAL RULE

  • Hong, Bum-Il;Choi, Sung-Hee;Hahm, Nahm-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.231-242
    • /
    • 2001
  • We showed in [2] that if r≤2, zero mean Gaussian of average error of the Trapezoidal rule is proportional to h/sub i//sup 2r+3/ on the interval [0,1]. In this paper, if r≥3, we show that zero mean Gaussian of average error of the Trapezoidal rule is bounded by Ch⁴/sub i/h⁴/sub j/.

Design of $H_{\infty}$ Controller for Underwater Vehicle and Nonlinear Simulation (수중운동체에 대한 $H_{\infty}$ 제어기 설계와 비선형 시뮬레이션)

  • 전찬식;김종해박홍배
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.215-218
    • /
    • 1998
  • In this paper, we design the $H_{\infty}$ controllers satisfying robust stability and performance for underwater vehicle. The underwater vehicle has computations delay time and input delay. In addition, there exist parameter uncertainties by the roll motion coefficient error, buoyance error, and gravity error. We design the $H_{\infty}$ controllers using model-matching method and check the performance of the proposed controller by nonlinear simulation which includes time delay model, sensor error model, and actuator model.

  • PDF

Error concealment for Low Bit Rate Video over Burst-packet-Loss Networks (다발적 패킷 손실 네트워크에서 저비트율 영상의 에러은닉)

  • 정진우;변재영;고성제
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.271-274
    • /
    • 2003
  • This paper presents a robust error concealment method for burst-packet-loss networks. The proposed error concealment algorithm can reduce the computational complexities of the existing error concealment methods. Moreover, experimental results show that the proposed method produces the better video quality than the conventional boundary matching algorithm.

  • PDF

The Program for Teaching on Type I error and Type II error

  • Choi, Hyun-Seok
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.17-23
    • /
    • 2004
  • At the conclusion from the hypothesis testing, there is a possibility of making Type I error and Type II error. The purpose of this article is to use this program in statistics teaching through developing the program for studying on the concept about these two errors, two kinds of the probability of errors by the variation of rejection region, two kinds of the probability of errors by the variation of sample size, the relations of the probability $\alpha$ and $\beta$ by these two errors, and power function, power curve.

  • PDF

VALUE FUNCTIONS AND ERROR BOUNDS OF TRUST REGION METHODS

  • Zhao, Wenling;Wang, Changyu
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.245-259
    • /
    • 2007
  • This paper studies some properties of the value functions and gives some sufficient and necessary conditions about the presented global error and local error. And it leads to one kind of relationship between iterative points and optimal solution or K-T point.

Characteristic of Error Amplifier Using OTA (OTA를 이용한 오차 증폭기의 특성)

  • 송재훈;김희준;정원섭;임동빈
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.185-188
    • /
    • 2001
  • This paper proposes an error amplifier circuit using OTA(Operational Transconductance Amplifier) which is the main constituent element in pulse width modulation circuit. The proposed OTA error amplifier circuit is featured by simple circuit configuration, excellent high frequency characteristics and bias current controlled output. Through the experiment of pulse width modulation circuit, the validity of the operation of the OTA error amplifier circuit is verified.

  • PDF

A Study on Reliability Evaluation of Application Software using Binomial-Type Model (이항형 모형을 이용한 응용 소프트웨어 의 신뢰성 평가에 관한 연구)

  • 조성건;이상철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.25
    • /
    • pp.53-62
    • /
    • 1992
  • Computer software users develop and utilize their application software by themselves since Processing methods are different by quantity and qualify of the information The developed model needs input data and error numbers generated during the testing phases. However. total error numbers of the existing model and each error time was needed as data for developing the new model. But, maximum likelihood estimation must be used to exponential model of binomial-type and estimating of parameters by using the searched data. Parameter estimation can be done with trial and error or simulation.

  • PDF

The Design of Error Detection Auto Correction for Conversion of Graphics to DTV Signal

  • Ryoo-Dongwan;Lee, Jeonwoo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.106-109
    • /
    • 2002
  • In the integrated systems, that is integrated digital TV(DTV) internet and home automation, like home server, is needed integration of digital TV video signal and computer graphic signal. The graphic signal is operating at the high speed and has time-divide-stream. So the re-request of data is not easy at the time of error detection. therefore EDAC algorithm is efficient. This paper presents the efficiency error detection auto correction(EDAC) for conversion of graphics signal to DTV video signal. A presented EDAC algorithms use the modified Hamming code for enhancing video quality and reliability. A EDAC algorithm of this paper can detect single error, double error, triple error and more error for preventing from incorrect correction. And it is not necessary an additional memory. In this paper The comparison between digital TV video signal and graphic signal, a EBAC algorithm and a design of conversion graphic signal to DTV signal with EDAC function is described.

  • PDF

Edge Enhanced Error Diffusion based on Gradient Shaping of Original image (원영상의 기울기 성형을 이용한 경계강조 오차확산법)

  • 강태하;황병원
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.70-73
    • /
    • 2000
  • The error diffusion is good for reproducing continuous image to binary image. However the reproduction of edge characteristics is weak in power spectrum analysis of display error. It is suggested for us an edge-enhanced error-diffusion method that is included pre-processing algorithm for edge characteristic enhancement. Pre-processing algorithm is organized horizontal and vertical directional 2nd order differential values and weighting function of pre-filter. The improved Error diffusion using pre-filter, presents a good results visually which edge characteristics is enhanced. The performance of the proposed algorithm is compared with that of the conventional edge-enhanced error diffusion by measuring the RAPSD of display error, the egde correlation and the local average accordance.

  • PDF

Compensation of Position Error due to Amplitude Imbalance in Resolver Signals

  • Hwang, Seon-Hwan;Kwon, Young-Hwa;Kim, Jang-Mok;Oh, Jin-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.748-756
    • /
    • 2009
  • This paper presents a compensation algorithm for position error due to an amplitude imbalance between resolver output signals. Resolvers are typically used to obtain absolute position information for motor drive systems in severe environments. Position error is caused by an amplitude imbalance of the resolver output signals. As a result, the d- and q-axis currents of synchronous reference frame have periodic ripples in the stator fundamental frequency in permanent magnet synchronous motor (PMSM) drive systems. Therefore, this paper proposes a compensation algorithm to reduce the position error generated by the amplitude imbalance. The proposed method does not require any additional hardware, and reduces computation time with a simple integral operation according to rotor position. In addition, the position error can be directly compensated for by the estimated position error. The effectiveness of the proposed compensation algorithm is verified through several simulations and experiments.