• Title/Summary/Keyword: Information Error

Search Result 11,146, Processing Time 0.034 seconds

A Study Software Reliability Model Using Error-Class (오류 분류를 이용한 소프트웨어 신뢰도 모델)

  • Jo, Yeong-Sik;Lee, Yong-Geun;Choe, Hyeong-Jin;Yang, Hae-Sul
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.231-241
    • /
    • 1996
  • The reliability in software has expand in quality and quantity, also its importance and role are increased. But, a study of software reliability is lack of development. this paper software reliability growth models(SRGM) described by NonHome-geneous Poisson(NHPP)processes. Using actual software error data observed by software testing the SRGM's are composition of error-class, and error-class by three class. this paper made the reliability-model of software using three error- class. The purpose of this study to increase software productivity and to improve software quality. So to achive these goals we focused a study of software reliability model using the error-class.

  • PDF

A Low-Error Truncated Booth Multiplier (작은 오차를 갖는 절사형 Booth 승산기)

  • 정해현;박종화;신경욱
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.617-620
    • /
    • 2001
  • This paper describes an efficient error-compensation technique for designing a low-error truncated Booth multiplier that receives two N-bit numbers and produces an N-bit product by eliminating the N least-significant bits. Applying the proposed method, a truncated Booth multiplier for area-efficient and low-power applications has been designed, and its performance (truncation error, area) was analyzed. Since the truncated Booth multiplier omits about half the partial product generators and adders, it has an area reduction by about 35%~40%, compared with non-truncated parallel multipliers. Error analysis shows that the proposed approach reduces the average truncation error by approximately 30%~40%, compared with conventional methods.

  • PDF

Performance Analysis of ECTP Error Control Mechanism (ECTP 오류복구 성능평가)

  • 박주영;고석주;강신각
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.605-609
    • /
    • 2002
  • Reliable multicast data transmission in a 1:N environment needs more sophisticated error control mechanism than that of in 1:1 environment due to ACK implosion and duplicated retransmission. Although there have been many related research on error control in reliable multicast, real implemented protocols are rare. As one of the reliable multicast transport protocols, ECTP is selected as an international standard reliable multicast protocol by ITU-T and ISO and implemented on RedHat 7.2 machine by us. In this paper, we evaluate the performance of the error control mechanism in the respect of throughput and generated control packet numbers with a real implementation code. From the results, it is concluded that the suitable values of error control parameters can be obtained from the local group size and network environments.

  • PDF

Video Error Concealment using Neighboring Motion Vectors (주변의 움직임 벡터를 사용한 비디오 에러 은닉 기법)

  • 임유두;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.257-263
    • /
    • 2003
  • Error control and concealment in video communication is becoming increasingly important because transmission errors can cause single or multiple loss of macroblocks in video delivery over unreliable channels such as wireless networks and the internet. This paper describes a temporal error concealment by postprocessing. Lost image blocks are overlapped block motion compensated (OBMC) using median of motion vectors from adjacent blocks at the decoder. The results show a significant improvement over zero motion error concealment and other temporal concealment methods such as Motion Vector Rational Interpolation or Side Match Criterion OBMC by 1.4 to 3.5㏈ gain in PSNR. We present experimental results showing improvements in PSNR and computational complexity.

An Efficient Spatial Error Concealment Technique Using Adaptive Edge-Oriented Interpolation (적응적 방향성 보간을 이용한 효율적인 공간적 에러 은닉 기법)

  • Park, Sun-Kyu;Kim, Won-Ki;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.487-495
    • /
    • 2007
  • When error occurs during the network transmission of the image, the quality of the restored image is very serious. Therefore to maintain the received image quality, the error concealment technique is necessary. This paper presents an efficient spatial error concealment method using adaptive edge-oriented interpolation. It deals with errors on slice level. The proposed method uses boundary matching method having 2-step processes. We divide error block into external and internal region, adaptively restore each region. Because this method use overall as well as local edge characteristics, it preserves edge continuity and texture feature. The proposed technique reduces the complexity and provide better reconstruction quality for damaged images than the previous methods.

Low-Complexity MIMO Detection Algorithm with Adaptive Interference Mitigation in DL MU-MIMO Systems with Quantization Error

  • Park, Jangyong;Kim, Minjoon;Kim, Hyunsub;Jung, Yunho;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.210-217
    • /
    • 2016
  • In this paper, we propose a low complexity multiple-input multiple-output (MIMO) detection algorithm with adaptive interference mitigation in downlink multiuser MIMO (DL MU-MIMO) systems with quantization error of the channel state information (CSI) feedback. In DL MU-MIMO systems using the imperfect precoding matrix caused by quantization error of the CSI feedback, the station receives the desired signal as well as the residual interference signal. Therefore, a complexMIMO detection algorithm with interference mitigation is required for mitigating the residual interference. To reduce the computational complexity, we propose a MIMO detection algorithm with adaptive interference mitigation. The proposed algorithm adaptively mitigates the residual interference by using the maximum likelihood detection (MLD) error criterion (MEC). We derive a theoretical MEC by using the MLD error condition and a practical MEC by approximating the theoretical MEC. In conclusion, the proposed algorithm adaptively performs interference mitigation when satisfying the practical MEC. Simulation results show that the proposed algorithm reduces the computational complexity and has the same performance, compared to the generalized sphere decoder, which always performs interference mitigation.

Error Analysis of time-based and angle-based location methods

  • Kim, Dong-Hyouk;Song, Seung-Hun;Sung, Tae-Kyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.479-483
    • /
    • 2006
  • Indoor positioning is recently highlighted and various kinds of indoor positioning systems are under developments. Since positioning systems have their own characteristics, proper positioning scheme should be chosen according to the required specifications. Positioning methods are often classified into time-based and angle-based one, and this paper presents the error analysis of these location methods. Because measurement equations of these methods are nonlinear, linearization is usually needed to get the position estimate. In this paper, Gauss-Newton method is used in the linearization. To analyze the position error, we investigate the error ellipse parameters that include eccentricity, rotation angle, and the size of ellipse. Simulation results show that the major axes of error ellipses of TOA and AOA method lie in different quadrants at most region of workspace, especially where the geometry is poor. When the TOA/AOA hybrid scheme is employed, it is found that the error ellipse is reduced to the intersection of ellipses of TOA and AOA method.

  • PDF

An Edge Sensitive Image Interpolation (에지 센서티브 이미지 보간)

  • Park, Se-Hee;Kim, Yong-Ha;Lee, Sang-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.294-298
    • /
    • 2009
  • In this study, we proposes the method to improve the quality of the image through the edge extraction more delicately. Our method is named ESII(Edge Sensitive Image Interpolation) and doesn't use the fixed parameter of the interpolation kernel. However, it changes the parameter of pixel which is interpolated to the high definition image using the proper information from the surrounding pixels. It reconstructs the image by using the LSE(Least Square Error) and determining the pixel values to make the CME(Camera Modelling Error) minimized. Compared to the conventional methods, suggested method shows the higher quality of subjective and objective image definition and lessons the computational complexity by separating the image into 1-D data.

Research Trends in Quantum Error Decoders for Fault-Tolerant Quantum Computing (결함허용 양자 컴퓨팅을 위한 양자 오류 복호기 연구 동향)

  • E.Y. Cho;J.H. On;C.Y. Kim;G. Cha
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.34-50
    • /
    • 2023
  • Quantum error correction is a key technology for achieving fault-tolerant quantum computation. Finding the best decoding solution to a single error syndrome pattern counteracting multiple errors is an NP-hard problem. Consequently, error decoding is one of the most expensive processes to protect the information in a logical qubit. Recent research on quantum error decoding has been focused on developing conventional and neural-network-based decoding algorithms to satisfy accuracy, speed, and scalability requirements. Although conventional decoding methods have notably improved accuracy in short codes, they face many challenges regarding speed and scalability in long codes. To overcome such problems, machine learning has been extensively applied to neural-network-based error decoding with meaningful results. Nevertheless, when using neural-network-based decoders alone, the learning cost grows exponentially with the code size. To prevent this problem, hierarchical error decoding has been devised by combining conventional and neural-network-based decoders. In addition, research on quantum error decoding is aimed at reducing the spacetime decoding cost and solving the backlog problem caused by decoding delays when using hardware-implemented decoders in cryogenic environments. We review the latest research trends in decoders for quantum error correction with high accuracy, neural-network-based quantum error decoders with high speed and scalability, and hardware-based quantum error decoders implemented in real qubit operating environments.

A Study on Minimization Method of Reading Error Range and Implementation of Postal 4-state Bar Code Reader with Raster Beam (Raster Beam에 의한 우편용 4-state 바코드 판독기 구현 및 판독오차 범위의 최소화 방법에 관한 연구)

  • Park, Moon-Sung;Song, Jae-Gwan;Nam, Yun-Seok;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2149-2160
    • /
    • 2000
  • Recently many efforts on the development of automatic processing system for delivery sequence sorting have been performed in ETRI, which requires the use of postal4-state bar code system to encode delivery points. The 4-state bar code called postal 4-state barcode for high speed processing that has been specifically designed for information processing of logistics and automatic processing of he mail items. The Information of 4-state bar code indicates mail data such as post code, delivery sequence number, error correction code worked, customer information, and a unique ID. This appear addresses the issue on he reduction of reading error in postal 4-state raster beam based bar code reader. The raster beam scanning features are the unequally distributed number of spots per each unit, which cause reading errors. We propose a method for reducing the bar code reading error by adjusting measured values of bar code width to its average value over each interval. The test results show that the above method reduces the average reading error rate approximately by 99.88%.

  • PDF