• 제목/요약/키워드: Information Error

검색결과 11,146건 처리시간 0.037초

Performance Test of Hypocenter Determination Methods under the Assumption of Inaccurate Velocity Models: A case of surface microseismic monitoring (부정확한 속도 모델을 가정한 진원 결정 방법의 성능평가: 지표면 미소지진 모니터링 사례)

  • Woo, Jeong-Ung;Rhie, Junkee;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2016
  • The hypocenter distribution of microseismic events generated by hydraulic fracturing for shale gas development provides essential information for understanding characteristics of fracture network. In this study, we evaluate how inaccurate velocity models influence the inversion results of two widely used location programs, hypoellipse and hypoDD, which are developed based on an iterative linear inversion. We assume that 98 stations are densely located inside the circle with a radius of 4 km and 5 artificial hypocenter sets (S0 ~ S4) are located from the center of the network to the south with 1 km interval. Each hypocenter set contains 25 events placed on the plane. To quantify accuracies of the inversion results, we defined 6 parameters: difference between average hypocenters of assumed and inverted locations, $d_1$; ratio of assumed and inverted areas estimated by hypocenters, r; difference between dip of the reference plane and the best fitting plane for determined hypocenters, ${\theta}$; difference between strike of the reference plane and the best fitting plane for determined hypocenters, ${\phi}$; root-mean-square distance between hypocenters and the best fitting plane, $d_2$; root-mean-square error in horizontal direction on the best fitting plane, $d_3$. Synthetic travel times are calculated for the reference model having 1D layered structure and the inaccurate velocity model for the inversion is constructed by using normal distribution with standard deviations of 0.1, 0.2, and 0.3 km/s, respectively, with respect to the reference model. The parameters $d_1$, r, ${\theta}$, and $d_2$ show positive correlation with the level of velocity perturbations, but the others are not sensitive to the perturbations except S4, which is located at the outer boundary of the network. In cases of S0, S1, S2, and S3, hypoellipse and hypoDD provide similar results for $d_1$. However, for other parameters, hypoDD shows much better results and errors of locations can be reduced by about several meters regardless of the level of perturbations. In light of the purpose to understand the characteristics of hydraulic fracturing, $1{\sigma}$ error of velocity structure should be under 0.2 km/s in hypoellipse and 0.3 km/s in hypoDD.

Design of a Crowd-Sourced Fingerprint Mapping and Localization System (군중-제공 신호지도 작성 및 위치 추적 시스템의 설계)

  • Choi, Eun-Mi;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제2권9호
    • /
    • pp.595-602
    • /
    • 2013
  • WiFi fingerprinting is well known as an effective localization technique used for indoor environments. However, this technique requires a large amount of pre-built fingerprint maps over the entire space. Moreover, due to environmental changes, these maps have to be newly built or updated periodically by experts. As a way to avoid this problem, crowd-sourced fingerprint mapping attracts many interests from researchers. This approach supports many volunteer users to share their WiFi fingerprints collected at a specific environment. Therefore, crowd-sourced fingerprinting can automatically update fingerprint maps up-to-date. In most previous systems, however, individual users were asked to enter their positions manually to build their local fingerprint maps. Moreover, the systems do not have any principled mechanism to keep fingerprint maps clean by detecting and filtering out erroneous fingerprints collected from multiple users. In this paper, we present the design of a crowd-sourced fingerprint mapping and localization(CMAL) system. The proposed system can not only automatically build and/or update WiFi fingerprint maps from fingerprint collections provided by multiple smartphone users, but also simultaneously track their positions using the up-to-date maps. The CMAL system consists of multiple clients to work on individual smartphones to collect fingerprints and a central server to maintain a database of fingerprint maps. Each client contains a particle filter-based WiFi SLAM engine, tracking the smartphone user's position and building each local fingerprint map. The server of our system adopts a Gaussian interpolation-based error filtering algorithm to maintain the integrity of fingerprint maps. Through various experiments, we show the high performance of our system.

Estimation of Genetic Parameter for Linear Type Traits in Holstein Dairy Cattle in Korea (Holstein종 젖소의 선형심사형질에 대한 유전모수추정)

  • Lee, Ki-Hwan;Sang, Byung-Chan;Nam, Myoung-Soo;Do, Chang-Hee;Choi, Jae-Gwan;Cho, Kawng-Hyun
    • Journal of Animal Science and Technology
    • /
    • 제51권5호
    • /
    • pp.345-352
    • /
    • 2009
  • This study utilized 332,625 records of linear type scores consisting for 15 primary traits, 22,175 final score and 84,612 pedigree information of 22,175 Holstein cows from 1993 to 2007 in Korea to estimate genetic parameters for 16 type traits. Genetic and error (co)variances between two traits selected from 16 traits were estimated using bi-trait pairwise analyses with DFREML package. The estimated heritabilities for stature (ST), strength (STR), body depth (BD), dairy form (DF), rump angle (RA), thurl width (TW), rear legs side view (RLSV), foot angle (FA), fore udder attachment (FUA), rear udder height (RUH), rear udder width (RUW), udder cleft (UC), udder depth (UD), front teat placement (FTP), front teat length (FTL) and final score (FS) were 0.31, 0.21, 0.25, 0.10, 0.29, 0.19, 0.09, 0.06, 0.12, 0.13, 0.12, 0.08, 0.26, 0.20, 0.28 and 0.15, respectively. ST had the highest positive genetic correlation with BD (0.90), while RLSV had the highest negative genetic correlation with FA (-0.56). RA had negative genetic correlation with most udder traits (-0.17~-0.02). Especially, RUW had the higher positive genetic correlation with STR (0.60), BD (0.62), and TW (0.49), however, UD had the higher negative genetic correlation with STR (-0.40) and BD (-0.40). FTL had negative genetic correlation with FUA, RUH, RUW, UC and UD. FS had positive genetic correlation with UC, UD and FTP (0.12, 0.18 and 0.20). However, additional research is needed on the use of these parameters in the genetic evaluation because estimated genetic and error variance-covariance matrices were not positive definite.

Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models (위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho;Shin, Minso;Park, Seohui;Kim, Sang-Min
    • Korean Journal of Remote Sensing
    • /
    • 제36권5_3호
    • /
    • pp.1053-1066
    • /
    • 2020
  • Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.

Quality Control of Upper Gastrointestinal Series(UGIS) by The Image Quality Evaluation Table of Korea and Japan (한.일 화질평가표에 의한 우리나라 위장조영검사의 품질관리)

  • Oh, Hye-Kyong;Kim, Jung-Min;Kim, Chang-Gyun;Park, Young-Seon;Seon, Jong-Ryul;Choi, In-Seok
    • Journal of radiological science and technology
    • /
    • 제34권4호
    • /
    • pp.277-285
    • /
    • 2011
  • To determine the quality control of UGIS, we acquired 105 patients sampling image at 21 general screening centers. The results of image quality evaluation table containing two countries's UGIS showed that the mean of image qualified education table of our country was 73.3 and the standard error was 4.49; In addition, 19 organizations of 21 general screening centers were given appropriate judgement. The average of image qualified education table of Japan was 58 and the standard error was 4.45. Only 8 organizations were given appropriate judgement. Although we made the image quality evaluation tables with same images, there were many differences in the result of two tables. We figured out the problem about the description of whole stomach and photograph skills. Furthermore, we analysed the situation of the UGIS at each general screening center with the acquired images. The biggest problem of the UGIS of our country was that the procedures were performed without clear medical methods. Methods of UGIS were different at every 21 general screening centers, and most of them did not take exam of anterior surface of stomach of the UGIS. In addition, some general screening centers did not include mucosal relief method or esophagography which is required to include in the image qualified education table of our country. Because polisography is used in the same body position, the problem occured about indiscreet exposure dose of patients. Therefore we have to make an effort to get X-ray images which have enough diagnosis information by the quality control of UGIS.

Evaluation of Real-time Measurement Liver Tumor's Movement and $Synchrony^{TM}$ System's Accuracy of Radiosurgery using a Robot CyberKnife (로봇사이버나이프를 이용한 간 종양의 실시간 움직임 측정과 방사선수술 시 호흡추적장치의 정확성 평가)

  • Kim, Gha-Jung;Shim, Su-Jung;Kim, Jeong-Ho;Min, Chul-Kee;Chung, Weon-Kuu
    • Radiation Oncology Journal
    • /
    • 제26권4호
    • /
    • pp.263-270
    • /
    • 2008
  • Purpose: This study aimed to quantitatively measure the movement of tumors in real-time and evaluate the treatment accuracy, during the treatment of a liver tumor patient, who underwent radiosurgery with a Synchrony Respiratory motion tracking system of a robot CyberKnife. Materials and Methods: The study subjects included 24 liver tumor patients who underwent CyberKnife treatment, which included 64 times of treatment with the Synchrony Respiratory motion tracking system ($Synchrony^{TM}$). The treatment involved inserting 4 to 6 acupuncture needles into the vicinity of the liver tumor in all the patients using ultrasonography as a guide. A treatment plan was set up using the CT images for treatment planning uses. The position of the acupuncture needle was identified for every treatment time by Digitally Reconstructed Radiography (DRR) prepared at the time of treatment planning and X-ray images photographed in real-time. Subsequent results were stored through a Motion Tracking System (MTS) using the Mtsmain.log treatment file. In this way, movement of the tumor was measured. Besides, the accuracy of radiosurgery using CyberKnife was evaluated by the correlation errors between the real-time positions of the acupuncture needles and the predicted coordinates. Results: The maximum and the average translational movement of the liver tumor were measured 23.5 mm and $13.9{\pm}5.5\;mm$, respectively from the superior to the inferior direction, 3.9 mm and $1.9{\pm}0.9mm$, respectively from left to right, and 8.3 mm and $4.9{\pm}1.9\;mm$, respectively from the anterior to the posterior direction. The maximum and the average rotational movement of the liver tumor were measured to be $3.3^{\circ}$ and $2.6{\pm}1.3^{\circ}$, respectively for X (Left-Right) axis rotation, $4.8^{\circ}$ and $2.3{\pm}1.0^{\circ}$, respectively for Y (Crania-Caudal) axis rotation, $3.9^{\circ}$ and $2.8{\pm}1.1^{\circ}$, respectively for Z (Anterior-Posterior) axis rotation. In addition, the average correlation error, which represents the treatment's accuracy was $1.1{\pm}0.7\;mm$. Conclusion: In this study real-time movement of a liver tumor during the radiosurgery could be verified quantitatively and the accuracy of the radiosurgery with the Synchrony Respiratory motion tracking system of robot could be evaluated. On this basis, the decision of treatment volume in radiosurgery or conventional radiotherapy and useful information on the movement of liver tumor are supposed to be provided.

The Informativeness of Cash Flows and Earnings (현금흐름과 이익의 정보성)

  • Pyo, Young-In
    • Korean Business Review
    • /
    • 제11권
    • /
    • pp.241-253
    • /
    • 1998
  • One form of the anomalies of stock price changes as reaction to earnings information is believed to be caused by the so-called earnings fixation, which is the overreaction of stock prices to earnings. According to the Sloan (1996) study, stock price changes are positively associated with earnings at the time of earnings releases, but the association becomes negative after that, as the early overreaction is corrected. However, the problem in his study is to use cash flows computed by adjusting earnings with appropriate income statement and balance sheet items. As Bahnson et al. (1996) show, these cash flows substantially deviate from SFAS No. 95 cash flows and the sample used in this study is found to be subject to this substantial measurement error. Therefore, the result of Sloan might be driven by this error and the reexamination of earnings fixation is warranted. The results are generally consistent with those in Sloan. First, earnings is positively associated with stock price changes at the time of earnings releases, but the association becomes negative after that. Second, cash flows show a weak association with stock price changes at the time of earnings releases, but the association become stronger thereafter. Third, when seperated from cash flows, accruals have an incremental explanation about stock price changes beyond that of cash flows, accruals have a negative association later on. This finding is consistent with stock price overreaction to accruals, even when more cleaner cash flow data are used.

  • PDF

Estimation of sediment deposition rate in collapsed reservoirs(wetlands) using empirical formulas and multiple regression models (경험공식 및 다중회귀모형을 이용한 붕괴 저수지(습지) 비퇴사량 추정)

  • Kim, Donghyun;Lee, Haneul;Bae, Younghye;Joo, Hongjun;Kim, Deokhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • 제23권4호
    • /
    • pp.287-295
    • /
    • 2021
  • As facilities such as dam reservoir wetlands and agricultural irrigation reservoir wetlands are built, sedimentation occurs over time through erosion, sedimentation transport, and sediment deposition. Sedimentation issues are very important for the maintenance of reservoir wetlands because long-term sedimentation of sediments affects flood and drought control functions. However, research on resignation has been estimated mainly by empirical formulas due to the lack of available data. The purpose of this study was to calculate and compare the sediment deposition rate by developing a multiple regression model along with actual data and empirical formulas. In addition, it was attempted to identify potential causes of collapse by applying it to 64 reservoir wetlands that suffered flood damage due to the long rainy season in 2020 due to reservoir wetland sedimentation and aging. For the target reservoir, 10 locations including the GaGog reservoir located in Miryang city, Gyeongsangnam province in South Korea, where there is actual survey information, were selected. A multiple regression model was developed in consideration of physical and climatic characteristics, and a total of four empirical formulas and sediment deposition rate were calculated. Using this, the error of the sediment deposition rate was compared. As a result of calculating the sediment deposition rate using the multiple regression model, the error was the lowest from 0.21(m3km2/yr) to 2.13(m3km2/yr). Therefore, based on the sediment deposition rate estimated by the multi-regression model, the change in the available capacity of reservoir wetlands was analyzed, and the effective storage capacity was found to have decreased from 0.21(%) to 16.56(%). In addition, the sediment deposition rate of the reservoir where the overflow damage occurred was relatively higher than that of the reservoir where the piping damage occurred. In other words, accumulating sediment deposition rate at the bottom of the reservoir would result in a lack of acceptable effective water capacity and reduced reservoir flood and drought control capabilities, resulting in reservoir collapse damage.

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • 제37권5_1호
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.

GOCI-II Capability of Improving the Accuracy of Ocean Color Products through Fusion with GK-2A/AMI (GK-2A/AMI와 융합을 통한 GOCI-II 해색 산출물 정확도 개선 가능성)

  • Lee, Kyeong-Sang;Ahn, Jae-Hyun;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • 제37권5_2호
    • /
    • pp.1295-1305
    • /
    • 2021
  • Satellite-derived ocean color products are required to effectively monitor clear open ocean and coastal water regions for various research fields. For this purpose, accurate correction of atmospheric effect is essential. Currently, the Geostationary Ocean Color Imager (GOCI)-II ground segment uses the reanalysis of meteorological fields such as European Centre for Medium-Range Weather Forecasts (ECMWF) or National Centers for Environmental Prediction (NCEP) to correct gas absorption by water vapor and ozone. In this process, uncertainties may occur due to the low spatiotemporal resolution of the meteorological data. In this study, we develop water vapor absorption correction model for the GK-2 combined GOCI-II atmospheric correction using Advanced Meteorological Imager (AMI) total precipitable water (TPW) information through radiative transfer model simulations. Also, we investigate the impact of the developed model on GOCI products. Overall, the errors with and without water vapor absorption correction in the top-of-atmosphere (TOA) reflectance at 620 nm and 680 nm are only 1.3% and 0.27%, indicating that there is no significant effect by the water vapor absorption model. However, the GK-2A combined water vapor absorption model has the large impacts at the 709 nm channel, as revealing error of 6 to 15% depending on the solar zenith angle and the TPW. We also found more significant impacts of the GK-2 combined water vapor absorption model on Rayleigh-corrected reflectance at all GOCI-II spectral bands. The errors generated from the TOA reflectance is greatly amplified, showing a large error of 1.46~4.98, 7.53~19.53, 0.25~0.64, 14.74~40.5, 8.2~18.56, 5.7~11.9% for from 620 nm to 865 nm, repectively, depending on the SZA. This study emphasizes the water vapor correction model can affect the accuracy and stability of ocean color products, and implies that the accuracy of GOCI-II ocean color products can be improved through fusion with GK-2A/AMI.