• Title/Summary/Keyword: Influenza A viruses

Search Result 166, Processing Time 0.028 seconds

Antiviral Activity of Zanthoxylum Species against Influenza Virus (인플루엔자 바이러스에 대한 Zanthoxylum속의 항바이러스 효과 검정)

  • Choi, Hwa-Jung;Song, Jae-Hyoung;Kwon, Dur-Han;Baek, Seung-Hwa;Ahn, Young-Joon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.273-278
    • /
    • 2008
  • We aimed to investigate the antiviral activity of Zanthoxylum species against influenza virus A/WS/33, A/PR/8 and B/Lee/40 used by sulforhodamine B (SRB) assay and the action of leaves extracts of Zanthoxylum piperitum on life cycle of influenza virus A/WS/33. Among the twelve extracts, only the leaf extract of Z. piperitum exhibited strong antiviral activity at low concentration of less than 10${\mu}g/m{\ell}$ with no citotoxicity (50${\mu}g/m{\ell}$) against all of three viruses. In addition, only oseltamivir showed antiviral activity with $IC_{50}$ of 65.3${\mu}g/m{\ell}$ against influenza A/WS/33 among the viruses. Furthermore, the leaf extract of Z. piperitum suppressed infection of influenza virus A/WS/33, when added just prior (-1 hr) or after virus inoculation (0 hr). Leaf extract of Z. piperitum directly affect the infectivity of influenza virus A/WS/33 particles. Therefore, Leaf extract of Z. piperitum exhibited higher antiviral activity against three influenza viruses than that of the oseltamivir, which directly interacts with influenza A/WS/33 particles, affecting the initial stages of infection such as receptor binding and virus entry.

Analysis of Influenza Virus Isolates in Seoul during 2003-2004 Season (2003-2004 절기 서울지역의 인플루엔자 바이러스 분리 및 아형 분석)

  • Hwang Young-Ok;Lee Jae-In;Seo Byung-tae
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • Influenza is an important public health problem which occurs almost every winter in temperate climates and is often associated with increased rates of hospitalization and death. In 1999, our influenza surveillance was initiated with 4 voluntary sentinel physicians and the Public Health Center. During the 2003-2004 influenza season, 124 influenza viruses were isolated from 401 clinical specimens, which were collected from patients with Influenza-like illness(ILI) in Seoul. The case definition of ILI is a case with fever more than $38^{\circ}C$ and systemic symptoms; cough, or sore throat. ILI was the highest at the 20-49 age $group(23\%)$ and the rate of virus isolation was the highest at the 7-19 age $group(50\%)$. Among 124 influenza viruses, isolates 83 were identified as A/H3N2 type and others were subtyped as influenza B viruses in 2003-2004 season. Influenza viruses were collected $39.1\%$ at Nowon-Gu, $13.5\%$ Gangnam-Gu and Seocho-Gu etc. and the isolate rate of virus had the area difference; Yongsan-Gu $66.7\%$, Gangnam-gu $50.0\%$, Nowon-Gu $39.9\%$, Kangbuk-Gu $36.8\%$, Seocho-Gu $27.8\%$, Dongjak-Gu $21.2\%$. Out of 401 individuals, 160 was vaccinated $(40\%)$ and the vaccination rate was the highest at the 20-49 age $group(32\%)$. These findings may contribute to the recommondation of the influenza vaccine formulation and the development of influenza control measure.

Detection of influenza A viruses by RT-PCR with single primer of nonstructural gene (비구조 단백질 유전자 primer를 사용한 RT-PCR에 의한 인플루엔자 A형 바이러스의 검출)

  • Moon, Hyeong-Sun;Bae, Yoon-Yeong;Jin, Ji-Dong;Kang, Zheng-Wu;Hahn, Tae-Wook
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.2
    • /
    • pp.103-109
    • /
    • 2009
  • Influeza type A virus have been worldwide problematic in animals as well as in humans. In this study, the use of reverse-transcriptase polymerase chain reaction (RT-PCR) was described for detecting influenza virus type A. The primer of RT-PCR was designed from an nonstructural (NS) gene of Influenza A virus. By RT-PCR, a product with the size of 189 bp was detected only when influenza virus type A was used as template. No products could be detected with Influenza virus type B as well as other respiratory pathogens. The detection limit of the RT-PCR was up to $10^{0.3}TCID_{50}$ which is comparable to the sensitivity of cell culture method. The RT-PCR could detect the influenza A virus from nasal turbinates of the ferrets infected with influenza virus type A not type B.

Overview of Pandemic Influenza (신종 인플루엔자 대유행 개관)

  • Kim, Woo-Joo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.4
    • /
    • pp.373-378
    • /
    • 2005
  • Influenza virus has a unique characteristics of annual epidemics of acute respiratory disease with attack rate of 10%-30% of the population. It is also the classical emerging infectious disease causing global pandemics when new antigenic shift occur. This antigenic shift is the key to its ability to evoke periodic pandemics, and it has caused at least 3 pandemics in 20th century. I reviewed these 3 pandemics in their natural courses and the epidemiology of the recent emerging influenza A viruses, especially the H5 and H7 subtypes. I descr ibed the epidemics of these vi ruses in human population and why we should be prepared to these viruses.

The Possibility of Avian Influenza Virus Infection in Human (가금인플루엔자 바이러스의 인체 감염 가능성)

  • 모인필;하봉도;송창선;김재홍
    • Korean Journal of Poultry Science
    • /
    • v.31 no.2
    • /
    • pp.109-118
    • /
    • 2004
  • Avian influenza(AI) is an epizootic disease of variable severity caused by type A influenza viruses of the orthomyxovirus group. Chickens were the most frequently affected avian species with AI viruses. There were many outbreaks of fowl plague, now known as highly pathogenic AI(HP AI), throughout the world since Perroncito described the fowl plague in 1978 in Italy. In recent years HPAI viruses of different serotypes such as H5, H7 and H9 has been isolated from humans on several occasions either related with outbreak of HPAI in birds or not. In 1997, one of the most noteworthy events in AI history was the human mortality with H5N1 HPAI virus infection in Hong Kong. Six persons of total 18 persons with clinical signs of influenza were died. Recently the human cases with mortality related with HP AI outbreaks in poultry industry has been increased such as outbreaks of HP AI throughout Asia countries including Korea, Japan, China, Vietnam, Thailand and others in 2003. Although these outbreaks revealed the capable of spreading from birds to human, the capability for transmission between people was not clear. Therefore, this report will review the possibility of HP AI infection in human associated with HPAI outbreak in poultry industry.

Occurrence and characterization of oseltamivir-resistant influenza virus in children between 2007-2008 and 2008-2009 seasons

  • Kim, Seoung Geun;Hwang, Yoon Ha;Shin, Yung Hae;Kim, Sung Won;Jung, Woo Sik;Kim, Sung Mi;Oh, Jae Min;Lee, Na Young;Kim, Mun Ju;Cho, Kyung Soon;Park, Yeon Gyeong;Min, Sang Kee;Lee, Chang Kyu;Kim, Jun Sub;Kang, Chun;Lee, Joo Yeon;Huh, Man Kyu;Kim, Chang Hoon
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.4
    • /
    • pp.165-175
    • /
    • 2013
  • Purpose: There was a global increase in the prevalence of oseltamivir-resistant influenza viruses during the 2007-2008 influenza season. This study was conducted to investigate the occurrence and characteristics of oseltamivir-resistant influenza viruses during the 2007-2008 and 2008-2009 influenza seasons among patients who were treated with oseltamivir (group A) and those that did not receive oseltamivir (group B). Methods: A prospective study was conducted on 321 pediatric patients who were hospitalized because of influenza during the 2007-2008 and 2008-2009 influenza seasons. Drug resistance tests were conducted on influenza viruses isolated from 91 patients. Results: There was no significant difference between the clinical characteristics of groups A and B during both seasons. Influenza A/H1N1, isolated from both groups A and B during the 2007-2008 and 2008-2009 periods, was not resistant to zanamivir. However, phenotypic analysis of the virus revealed a high oseltamivir $IC_{50}$ range and that H275Y substitution of the neuraminidase (NA) gene and partial variation of the hemagglutinin (HA) gene did not affect its antigenicity to the HA vaccine even though group A had a shorter hospitalization duration and fewer lower respiratory tract complications than group B. In addition, there was no significant difference in the clinical manifestations between oseltamivir-susceptible and oseltamivir-resistant strains of influenza A/H1N1. Conclusion: Establishment of guidelines to efficiently treat influenza with oseltamivir, a commonly used drug for treating influenza in Korean pediatric patients, and a treatment strategy with a new therapeutic agent is required.

Genetic diversity of the H5N1 viruses in live bird markets, Indonesia

  • Dharmayanti, Ni Luh Putu Indi;Hewajuli, Dyah Ayu;Ratnawati, Atik;Hartawan, Risza
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.56.1-56.13
    • /
    • 2020
  • Background: The live bird market (LBM) plays an important role in the dynamic evolution of the avian influenza H5N1 virus. Objectives: The main objective of this study was to monitor the genetic diversity of the H5N1 viruses in LBMs in Indonesia. Methods: Therefore, the disease surveillance was conducted in the area of Banten, West Java, Central Java, East Java, and Jakarta Province, Indonesia from 2014 to 2019. Subsequently, the genetic characterization of the H5N1 viruses was performed by sequencing all 8 segments of the viral genome. Results: As a result, the H5N1 viruses were detected in most of LBMs in both bird' cloacal and environmental samples, in which about 35% of all samples were positive for influenza A and, subsequently, about 52% of these samples were positive for H5 subtyping. Based on the genetic analyses of 14 viruses isolated from LBMs, genetic diversities of the H5N1 viruses were identified including clades 2.1.3 and 2.3.2 as typical predominant groups as well as reassortant viruses between these 2 clades. Conclusions: As a consequence, zoonotic transmission to humans in the market could be occurred from the exposure of infected birds and/or contaminated environments. Moreover, new virus variants could emerge from the LBM environment. Therefore, improving pandemic preparedness raised great concerns related to the zoonotic aspect of new influenza variants because of its high adaptivity and efficiency for human infection.

Novel swine-origin H1N1 influenza (신종 H1N1 인플루엔자)

  • Lee, Jina;Lee, Hoan Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.8
    • /
    • pp.862-868
    • /
    • 2009
  • Since its identification in April 2009, a swine-origin H1N1 influenza A virus (S-OIV) which is a reassortment of gene segments from both North American triple-reassortant and Eurasian swine influenza has been widely spread among humans in unexpected rapidity. To date, each gene segment of the 2009 influenza A (H1N1) outbreak viruses have shown high (99.9%) neucleotide sequence identity. As of July 6, 94,512 people have been infected in 122 countries, of whom 429 have died with an overall case-fatality rate of <0.5%. Most confirmed cases of S-OIV infection have been characterized by self-limited, uncomplicated febrile respiratory illness and 38% of cases have also included vomiting or diarrhea. Standard plus droplet precautions should be adhered to at all times. Tests on S-OIV have indicated that current new H1N1 viruses are sensitive to neuraminidase inhibitors (oseltamivir). However, current less virulent S-OIV may evolve into a pathogenic strain or acquire antiviral resistance, potentially with more severe clinical consequences. Efforts to control these outbreaks would be based on our understanding of novel S-OIV and previous influenza pandemics.

Development of reverse-transcription loop-mediated isothermal amplification assays for point-of-care testing of human influenza virus subtypes H1N1 and H3N2

  • Ji-Soo Kang;Mi-Ran Seo;Yeun-Jun Chung
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.46.1-46.7
    • /
    • 2022
  • Influenza A virus (IAV) is the most widespread pathogen causing human respiratory infections. Although polymerase chain reaction (PCR)-based methods are currently the most commonly used tools for IAV detection, PCR is not ideal for point-of-care testing. In this study, we aimed to develop a more rapid and sensitive method than PCR-based tools to detect IAV using loop-mediated isothermal amplification (LAMP) technology. We designed reverse-transcriptional (RT)-LAMP primers targeting the hemagglutinin gene. RNAs from reference H1N1 and H3N2 showed specific RT-LAMP signals with the designed primers. We optimized the reaction conditions and developed universal reaction conditions for both LAMP assays. Under these conditions, the detection limit was 50 copies for both RT-LAMP assays. There was no non-specific signal to 19 non-IAV respiratory viruses, such as influenza B virus, coronaviruses, and respiratory syncytial viruses. Regarding the reaction time, a positive signal was detected within 25 min after starting the reaction. In conclusion, our RT-LAMP assay has high sensitivity and specificity for the detection of the H1 and H3 subtypes, making it suitable for point-of-care IAV testing.

Detection of Airborne Respiratory Viruses in Residential Environments (주거환경 공기 중 호흡기 바이러스의 검출)

  • Park, Keun-Tae;Moon, Kyong-Whan;Kim, Hyung-Tae;Park, Chan-Jung;Jeong, Ho-Chul;Lim, Young-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.4
    • /
    • pp.306-314
    • /
    • 2011
  • Objectives: Respiratory virus infections are the most common disease among all ages in all parts of the world and occur through airborne transmission. The purpose of this study was to detect and quantitate human respiratory viruses in residential environments. Methods: Air samples were collected from the residential space of apartments in the Seoul/Gyeonggi-do area. The samples were collected from indoor and outdoor air. Among respiratory viruses, influenza A virus, influenza B virus, parainfluenza virus, metapneumovirus, respiratory syncytial virus, and adenovirus were investigated by multiplex polymerase chain reaction. Among the virus-positive samples, we performed adenovirus quantification by real-time polymerase chain reaction. Results: Virus detection rates were 44.0%, 3.8%, 3.4%, and 17.3% in spring, summer, autumn, and winter, respectively. The virus detection rate was higher in winter and spring than in summer and autumn. Adenovirus was most commonly detected, followed by influenza A virus and parainfluenza virus. Virus distribution was not significantly different between indoor and outdoor environments. Conclusions: Although virus concentrations were not high in residential environments, residents in houses with detected viruses may have an increased risk of exposure to airborne respiratory viruses, especially in winter and spring.