• Title/Summary/Keyword: Influenza A Virus

Search Result 389, Processing Time 0.03 seconds

Comparison of Blood Test Results and Symptoms of Patients with COVID-19 Monoinfection and with COVID-19 and Influenza Virus Co-Infection (COVID-19 단일 감염 환자와 COVID-19 및 인플루엔자 바이러스 동시 감염 환자의 혈액 검사 결과 및 증상 비교)

  • Jung, Bo Kyeung;Ham, Seung Keun;Kim, Jae Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.103-109
    • /
    • 2022
  • In December 2019, the coronavirus disease 2019 (COVID-19) caused by the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and spread rapidly around the world, infecting millions of people. Cases of COVID-19 infection were observed to lead to viral pneumonia. Thirty-five patients admitted to the Gyeonggi Medical Center, South Korea, between November 2020 to January 2021, were found to have been infected with the influenza virus A and B, which cause symptoms similar to COVID-19. The records of these patients and those of COVID-19 patients who visited the hospital for medical examination were compared. The study patients included thirty patients with COVID-19 and/or influenza, five of those with influenza alone. A group of 121 patients without infection was used as control. Patients with COVID-19 and influenza had significantly higher lactate dehydrogenase levels than the patients with COVID-19 alone. The erythrocyte sedimentation rate (ESR) was higher in patients with COVID-19 alone than in other groups. Significant clinical outliers were observed in the COVID-19 and influenza infection group compared with the COVID-19 alone group. These results are expected to play an important role in the analysis of the hematological data of infected patients and the comparison of simultaneous and single infection data to determine clinical symptoms and other signs. These results may also assist in the development of vaccines and treatments for COVID-19.

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF

Effectiveness and safety of seasonal influenza vaccination in children with underlying respiratory diseases and allergy

  • Kang, Jin-Han
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.4
    • /
    • pp.164-170
    • /
    • 2014
  • Influenza causes acute respiratory infections and various complications. Children in the high-risk group have higher complication and hospitalization rates than high-risk elderly individuals. Influenza prevention in children is important, as they can be a source infection spread in their communities. Influenza vaccination is strongly recommended for high-risk children with chronic underlying circulatory and respiratory disease, immature infants, and children receiving long-term immunosuppressant treatment or aspirin. However, vaccination rates in these children are low because of concerns regarding the exacerbation of underlying diseases and vaccine efficacy. To address these concerns, many clinical studies on children with underlying respiratory diseases have been conducted since the 1970s. Most of these reported no differences in immunogenicity or adverse reactions between healthy children and those with underlying respiratory diseases and no adverse effects of the influenza vaccine on the disease course. Further to these studies, the inactivated split-virus influenza vaccine is recommended for children with underlying respiratory disease, in many countries. However, the live-attenuated influenza vaccine (LAIV) is not recommended for children younger than 5 years with asthma or recurrent wheezing. Influenza vaccination is contraindicated in patients with severe allergies to egg, chicken, or feathers, because egg-cultivated influenza vaccines may contain ovalbumin. There has been no recent report of serious adverse events after influenza vaccination in children with egg allergy. However, many experts recommend the trivalent influenza vaccine for patients with severe egg allergy, with close observation for 30 minutes after vaccination. LAIV is still not recommended for patients with asthma or egg allergy.

Inactivation of Avian Influenza Viruses by Alkaline Disinfectant Solution (알칼리성 소독액에 의한 조류인플루엔자바이러스 불활성화)

  • Jo, Su-Kyung;Kim, Heui-Man;Lee, Chang-Jun;Lee, Joo-Seob;Seo, Sang-Heui
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.340-344
    • /
    • 2007
  • Avian influenza viruses cause a considerable threat to humans and animals. In this study, we investigated whether alkaline disinfectant solution can inactivate H5N1, H3N2, H6N1, and H9N2 subtypes of avian influenza virus. When H5N1, H3N2, H6N1, and H9N2 avian influenza viruses were treated with alkaline solution diluted with PBS (pH 7.2) prior to infection into MDCK cells, alkaline disinfectant solution (at dilutions up to $10^{-2}$) completely inactivated all avian influenza subtypes tested. To confirm the inactivation of avian influenza viruses by alkaline disinfectant solution, we used an immunofluorescence assay with influenza A anti-nucleoprotein antibody and FITC-labeled secondary antibody to stain MDCK cells infected with avian H9N2 influenza viruses. No staining was observed in MDCK rells infected with H9N2 viruses that were pre-treated with a $10^{-2}$ dilution of alkaline disinfectant solution, while strong staining was observed in MDCK cells infected with H9N2 viruses without pre-treatment. Our results indicate that alkaline solution could help to control avian influenza viruses including the highly pathogenic H5N1 subtype.

Clinical Analysis of Influenza in Children and Rapid Antigen Detection Test on First Half of the Year 2004 in Busan (2004 상반기 부산 지역에서 유행한 인플루엔자의 임상 역학적 분석 및 인플루엔자 진단에 있어서의 신속 항원 검사법)

  • Choi, So Young;Lee, Na Young;Kim, Sung Mi;Kim, Gil Heun;Jung, Jin Hwa;Choi, Im Jung;Cho, Kyung Soon
    • Pediatric Infection and Vaccine
    • /
    • v.11 no.2
    • /
    • pp.158-169
    • /
    • 2004
  • Purpose : Although influenza is one of the most important cause of acute respiratory tract infections in children, virus isolation is not popular and there are only a few clinical studies on influenza and diagnostic methods. We evaluated the epidemiological and clinical features of influenza in children and rapid antigen detection test(QuickVue influenza test) on fist half of the year 2004 in Busan. Methods : From January 2004 to June 2004, throat swab and nasal secretion were obtained and cultured for the isolation of influenza virus and tested by rapid antigen detection test(QuickVue influenza test) in children with suspected influenza infections. The medical records of patients with influenza virus infection were reviewed retrospectively. Results : Influenza viruses were isolated in 79(17.2%) out of 621 patients examined. Influenza virus was isolated mainly from March to April 2004. The ratio of male and female with influenza virus infection was 1.2 : 1 with median age of 4 years 6month. The most common clinical diagnosis of influenza virus infection was bronchitis. There was no difference between influenza A and B infection in clinical diagnosis and symptoms. All patients recovered without severe complication. The sensitivity obtained for rapid antigen detection test (QuickVue influenza test) was 93.6% and the specificity was 80.2%, the positive predictive value 40.8%, the negative predictive value 98.8%. Conclusion : With rapid antigen detection test, it is possible early detection of influenza in children. reduction in use of antimicrobial agent and early use of antiviral agent.

  • PDF

Generation of a High-Growth Influenza Vaccine Strain in MDCK Cells for Vaccine Preparedness

  • Kim, Eun-Ha;Kwon, Hyeok-Il;Park, Su-Jin;Kim, Young-Il;Si, Young-Jae;Lee, In-Won;Kim, Se mi;Kim, Soo-In;Ahn, Dong-Ho;Choi, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.997-1006
    • /
    • 2018
  • As shown during the 2009 pandemic H1N1 (A(H1N1)pdm09) outbreak, egg-based influenza vaccine production technology is insufficient to meet global demands during an influenza pandemic. Therefore, there is a need to adapt cell culture-derived vaccine technology using suspended cell lines for more rapid and larger-scale vaccine production. In this study, we attempted to generate a high-growth influenza vaccine strain in MDCK cells using an A/Puerto/8/1934 (H1N1) vaccine seed strain. Following 48 serial passages with four rounds of virus plaque purification in MDCK cells, we were able to select several MDCK-adapted plaques that could grow over $10^8PFU/ml$. Genetic characterization revealed that these viruses mainly had amino acid substitutions in internal genes and exhibited higher polymerase activities. By using a series of Rg viruses, we demonstrated the essential residues of each gene and identified a set of high-growth strains in MDCK cells ($PB1_{D153N}$, $M1_{A137T}$, and $NS1_{N176S}$). In addition, we confirmed that in the context of the high-growth A/PR/8/34 backbone, A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2), and A/environment/Korea/deltaW150/2006 (H5N1) also showed significantly enhanced growth properties (more than $10^7PFU/ml$) in both attached- and suspended-MDCK cells compared with each representative virus and the original PR8 vaccine strain. Taken together, this study demonstrates the feasibility of a cell culture-derived approach to produce seed viruses for influenza vaccines that are cheap and can be grown promptly and vigorously as a substitute for egg-based vaccines. Thus, our results suggest that MDCK cell-based vaccine production is a feasible option for producing large-scale vaccines in case of pandemic outbreaks.

Mathematical Modeling of the Novel Influenza A (H1N1) Virus and Evaluation of the Epidemic Response Strategies in the Republic of Korea (수학적 모델을 이용한 신종인플루엔자 환자 예측 및 대응 전략 평가)

  • Suh, Min-A;Lee, Jee-Hyun;Chi, Hye-Jin;Kim, Young-Keun;Kang, Dae-Yong;Hur, Nam-Wook;Ha, Kyung-Hwa;Lee, Dong-Han;Kim, Chang-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.43 no.2
    • /
    • pp.109-116
    • /
    • 2010
  • Objectives: The pandemic of novel influenza A (H1N1) virus has required decision-makers to act in the face of the substantial uncertainties. In this study, we evaluated the potential impact of the pandemic response strategies in the Republic of Korea using a mathematical model. Methods: We developed a deterministic model of a pandemic (H1N1) 2009 in a structured population using the demographic data from the Korean population and the epidemiological feature of the pandemic (H1N1) 2009. To estimate the parameter values for the deterministic model, we used the available data from the previous studies on pandemic influenza. The pandemic response strategies of the Republic of Korea for novel influenza A (H1N1) virus such as school closure, mass vaccination (70% of population in 30 days), and a policy for anti-viral drug (treatment or prophylaxis) were applied to the deterministic model. Results: The effect of two-week school closure on the attack rate was low regardless of the timing of the intervention. The earlier vaccination showed the effect of greater delays in reaching the peak of outbreaks. When it was no vaccination, vaccination at initiation of outbreak, vaccination 90 days after the initiation of outbreak and vaccination at the epidemic peak point, the total number of clinical cases for 400 days were 20.8 million, 4.4 million, 4.7 million and 12.6 million, respectively. The pandemic response strategies of the Republic of Korea delayed the peak of outbreaks (about 40 days) and decreased the number of cumulative clinical cases (8 million). Conclusions: Rapid vaccination was the most important factor to control the spread of pandemic influenza, and the response strategies of the Republic of Korea were shown to delay the spread of pandemic influenza in this deterministic model.

Clinical Features of Hospitalized Adult Patients with Pneumonia in Novel Influenza A (H1N1) Infection (신종 인플루엔자 A (H1N1) 감염으로 입원한 성인 폐렴 환자의 임상양상)

  • Han, Chang-Hoon;Hyun, Yu-Kyung;Choi, Yu-Ri;Sung, Na-Young;Park, Yoon-Seon;Lee, Kkot-Sil;Chung, Jae-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.1
    • /
    • pp.24-30
    • /
    • 2010
  • Background: A novel 2009 influenza A (H1N1) virus emerged and disseminated to all over the world. There are few reports on the clinical characteristics of patients with complications. We describe the clinical features of pneumonia in adult patients hospitalized, who have novel influenza infection. Methods: There were 43 adult patients enrolled into the study with pneumonia of 528 hospitalized patients confirmed influenza A (H1N1) virus infection by real-time reverse transcriptase polymerase chain reaction testing, between 24 August 2009 and 31 January 2010. The clinical data of patients with pneumonia were collected retrospectively. Results: There were 22 of 43 (51.2%) influenza patients with pneumonia that had higher risk factors for complications. Compared to 28 patients with influenza A (H1N1) viral pneumonia and 15 patients, who had isolated bacteria from cultures, those with mixed viral and bacterial pneumonia were significantly more likely to have unilobar consolidations on chest radiographs (53.3 vs. 10.7%, p<0.01) and higher scores of pneumonia severity index (PSI; 90 [66~100] vs. 53 [28~90], p=0.04). Six patients required mechanical ventilation support in an Intensive Care Unit and were more likely to have dyspnea (83.3 vs. 29.3%, p=0.02) and low levels of $PaO_2$ (48.3 [37.0~70.5] vs 64.0 [60.0~74.5] mm Hg, p=0.02) and high levels of pneumonia severity index (PSI) score (108.0 [74.5~142.8] vs. 56.0 [40.5~91.0], p=0.03). Conclusion: The majority of pneumonia patients infected with novel influenza improved. Chest radiographic findings of unilobar consolidations suggest that mixed pneumonia is more likely. Initial dyspnea, hypoxemia, and high levels of PSI score are associated with undergoing mechanical ventilation support.

Microbiological Effects of Xanthorrhizol and Houttuynia cordata Thunb. Extract (잔토리졸과 어성초 추출물의 항균 효과)

  • Cho, Wan-Goo;Kim, Jeong-Il;Kim, Min-Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.269-274
    • /
    • 2008
  • Anti-microbiological effects of xanthorrhizol, ie., extract from curcuma xanthorrhiza and extract from houttuynia cordata Thunb. against influenza virus and E. coli O157 were tested. From the influenza experiments, the effects were shown above 93 % in case of houttuynia cordata Thunb. extract, however, the effects was not shown in case of xanthorrhizol. The effects were sustained in mixtures of houttuynia cordata Thunb. and curcuma xanthorrhiza extracts. We also tested the anti-microbiological effects of hand sanitizer containing houttuynia cordata Thunb. and xanthorrhizol. The effect of hand sanitizer containing 2,000 ppm of xanthorrhizol and 500 ppm of houttuynia cordata Thunb. extract was better than that of commercialized foreign product.

Early Diagnostic Method of Avian Influenza Virus Subtype Using Ultra Real-Time PCR (Ultra Real-Time PCR을 활용한 Avian Influenza Virus Subtype의 조기진단법)

  • Kim, Sang-Tae;Kim, Young-Kyoon;Kim, Jang-Su
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • This ultra real-time PCR (UPCR) based diagnosis system for avian influenza A virus (AIV) subtype was designed. The target primer in this study was derived from H5N1 subtype-specific 133 bp partial gene of hemagglutinin (HA), and was synthesized by using PCR-based gene synthesis on the ground of safety. UPCR was operated by Mini-Opticon Q-PCR Quantitative Thermal Cycler using aptamer-based molecular beacon, total 10 ${\mu}l$ of reaction mixture with extraordinarily short time in each steps in PCR. The detection including UPCR and analysis of melting temperature was totally operated within 15 min. The AIV-specific 133 bp PCR product was correctly amplified until 5 molecules of HA gene as minimum of templates. This kind of PCR was drafted as UPCR in this study and it could be used to detect not only AIV subtype, but also other pathogens using UPCR-based diagnosis.