• Title/Summary/Keyword: Influent characteristics

Search Result 196, Processing Time 0.017 seconds

Biological Aerated Filter에서 유입 질소농도에 따른 아질산화 특성 (Nitritation Characteristics Depending on Influent Nitrogen Concentration in a Biological Aerated Filter)

  • 유익근
    • 한국물환경학회지
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2014
  • The purpose of this study was to investigate the nitrification characteristics of biological aerated filter (BAF) packed with ceramic media, especially focusing on nitrite build-up during nitrification. When increasing the nitrogen load above $1.63kgNH_4{^+}-N/m^3{\cdot}d$, ammonium removal efficiency decreased to less than 60% and the nitrite ratio ($NO_2{^-}-N/NO_x-N$) of higher than 75% was achieved due to the inhibitory free ammonia (FA, $NH_3-N$) concentration and oxygen limitation. FA inhibition, however, is not recommended strategy to promote nitrite build-up since FA concentration in the reactor is coupled with decreased ammonium removal efficiency. Nitrite ratio in the effluent was also affected by aeration rate and influent ammonium concentration. Ammonium oxidation was enhanced at a higher aeration rate regardless of influent ammonium concentration but, the nitrite ratio was dependent on both aeration rate and influent ammonium concentration. While a higher nitrite ratio was obtained when BAFs were fed with $50mgNH_4{^+}-N/L$ of influent, the nitrite ratio significantly decreased for a greater influent concentration of $200-300mgNH_4{^+}-N/L$. Taken together, aeration rate, influent ammonium concentration and FA concentrations kept in the BAF were found to be critical variables for nitrite accumulation in the BAF system.

기상조건이 하수발생량 및 하수처리장 운전인자에 미치는 영향에 관한 통계적 분석 (Study on the Relationship between Weather Conditions, Sewage and Operational Variables of WWTPs using Multivariate Statistical Methods)

  • 이재현
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.285-291
    • /
    • 2012
  • Generally, the rainfall and the influent of wastewater treatment plants (WWTPs) have strong relationship at the case of combined sewers. With the fact that the influent variations in terms of quantity and sewage quality is the most common and significant disturbance, the impact factor to the characteristics of sewage should be searched for. In this paper, the relationship between weather conditions such as humidity, temperature and rainfall and influent flowrate and contaminant concentration was analysed using factor analysis. Additionally, 3 influent types were deduced using cluster analysis and the distributions of operational variables were compared to the each groups by one-way ANOVA. The applied dataset were clustered to three groups that have the similar weather and influent conditions. These different conditions can cause the different operating conditions at WWTPs. That is, the Group 1 is for the condition with high humidity and rainfall, so DO concentration in the reactor was very high but MLSS concentration was very low because of too large flowrate. However, the Group 3 is classified to the case having low humidity, temperature, and rainfall, therefore, the SRT was the longest and the SVI was the highest due to the worst settleability in the winter for a year.

SBR과 SBBR에서 유입 인 농도 감소에 따른 인과 질소의 제거 특성 변화 (Variation of Phosphorus and Nitrogen Removal Characteristics According to the Decrease of Influent Phosphorus Concentration in SBR and SBBR)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제19권4호
    • /
    • pp.483-490
    • /
    • 2010
  • The purpose of this study is to investigate the effect of influent phosphorus concentration on the nitrogen and phosphorus removal in sequencing batch reactor(SBR) and sequencing batch biofilm reactors(SBBRs) in order to recover the enhanced biological phosphorus removal (EBPR) capacity at the sludge of the deterioration of EBPR capacity. In SBBRs, comparing to SBR, the organic removal was occurred actively at the 1 st non-aeration period because of the active phosphorus release at this period. However, the variation of TOC removal according to the decrease of influent phosphorus concentration was not clearly shown both in SBR and SBBRs. In case of SBR losing EBPR capacity, the EBPR capacity was not recovered by the decrease of the influent phosphorus concentration from 7.5 mg/L to 0.9 mg/L. The nitrogen removal increased by the decrease of influent phosphorus concentration both in SBR and SBBRs.

물질수지분석을 이용한 하수처리장 유입수질 측정 센서의 상태 진단 (Sensor State Isolation for Wastewater Based on Influent Characteristics Methodology)

  • 백지원;김종락;유광태;김예진
    • 한국물환경학회지
    • /
    • 제40권4호
    • /
    • pp.168-178
    • /
    • 2024
  • Wastewater treatment plants are constantly exposed to influent wastewater that is constantly changing. This poses a major challenge to the operation of the plants. It is crucial to have a rapid and accurate measurement of the influent concentrations of wastewater in order to maintain and optimize treatment performance, as well as to develop energy-saving strategies. While laboratory measurements provide the highest accuracy in determining influent water quality, they are inevitably time-consuming procedures. In order to cope with the ongoing disturbances from wastewater influent, absorption-based optical measuring instruments have been developed. These instruments can detect the influent water quality in a short amount of time, improving their practicality and reliability. However, when these optical measuring instruments malfunction, the accuracy of the measured values decreases, leading to unreasonable operation of the treatment plant. This paper proposes a method for detecting anomalies in optical water quality measurement devices. The Harmony Search algorithm is used to validate the measured water quality values and detect abnormalities such as contamination or physical anomalies in the measurement apparatus. To assess the performance of the developed algorithm in detecting anomalies, validation was conducted by installing it in a field-scale wastewater treatment plant. The results consistently showed that the developed fault detection method for optical water quality measurements equipment provided acceptable results for normal, temporary abnormal, and long-term abnormal conditions.

소규모 오수처리를 위한 $A_{2}O$ SBR과 $A_{2}O$ SBBR에서 유입 유기물 농도변화에 따른 염양염류 제거 특성 비교 (A Comparison of Nutrients Removal Characteristics by the Variation of Organics in $A_{2}O$ SBR and $A_{2}O$ SBBR for the Small Sewerage System)

  • 박영식;정노성;김동석
    • 한국환경보건학회지
    • /
    • 제32권5호
    • /
    • pp.451-461
    • /
    • 2006
  • Laboratory scale experiments were conducted to study the conversion of sludge from conventional activated sludge to nitrogen-phosphorus removal sludge using two types of sequencing batch reactor (SBR) systems, a conventional SBR and sequencing batch biofilm reactor (SBBR). The nitrogen and phosphorus removal characteristics were similar between SBR and SBBR and the removal efficiencies were very low when the influent TOC concentrations were low. The nitrogen and phosphorus removal efficiencies in SBR were 96% and 77.5%, respectively, which were higher than those in SBBR (88% and 42.5%) at the high influent TOC concentration. In SBBR, the simultaneous nitrification-denitrification was occurred because of the biofilm process. The variations of pH, DO concentration and ORP were changed as the variation of influent TOC concentration both in SBR and SBBR and their periodical characteristics were cleary shown at the high influent TOC concentration. Especially, the pH, DO concentration and ORP inflections, were cleary occurred in SBR compared with SBBR.

하수처리장 유입수의 특성평가를 위한 실시간 수질예측 (Real-time Water Quality Prediction for Evaluation of Influent Characteristics in a Full-scale Sewerage Treatment Plant)

  • 김연권;채수권;한인선;김주환
    • 환경영향평가
    • /
    • 제19권6호
    • /
    • pp.617-623
    • /
    • 2010
  • It is the most important subject to figure out characteristics of the wastewater inflows of sewerage treatment plant(STP) when situation models are applied to operation of the biological processes and in the automatic control based on ICA(Instrument, Control and Automation). For the purposes, real-time influent monitoring method has been applied by using on-line monitoring equipments for the process optimization in conventional STP. Since, the influent of STP is consist of complex components such as, COD, BOD, TN, $NH_4$-N, $NO_3$-N, TP and $PO_4$-P. MRA2(Microbial Respiration Analyzer 2), which is capable of real-time analyzing of wastewater characteristics is used to overcome the limitations and defects of conventional online monitoring equipments in this study. Rapidity, accuracy and stability of developed MRA2 are evaluated and compared with the results from on-line monitoring equipments for seven months after installation in Full-scale STP.

하·폐수 처리시설 내 유입수 특성이 유기물 처리효율에 미치는 영향 (Effects of the Characteristics of Influent Wastewater on Removal Efficiencies for Organic Matters in Wastewater Treatment Plants)

  • 이태환;박민혜;이보미;허진;양희정
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.674-681
    • /
    • 2009
  • Characteristics of organic matters (OM) in wastewater and the removal efficiencies were investigated using the influent and the effluent samples collected from 21 wastewater treatment plants. The OM characteristics investigated included biodegradability, humic content, specific UV absorbance (SUVA), the distribution percentage of refractory OM (R-OM), and synchronous fluorescence spectra. The types of wastewater (sewage, livestock waste/night soils, industrial waste) were easily distinguished by comparing the synchronous fluorescence spectra of the influent wastewater. The prominent peak of protein-like fluorescence (PLF) was observed for livestock waste/night soils whereas sewage exhibited a unique fluorescence peak at a wavelength of 370 nm. Irrespective of the wastewater types, the distribution percentage of R-OM increased from the influent to the effluent. Livestock waste/night soils showed the highest removal efficiency among all the three types of wastewater. There was no statistical difference of the removal efficiency between a traditional activated sludge and biological advanced treatment processes. Removal efficiency based on dissolved organic carbon DOC presented good correlations with the distribution percentage of R-OM and fulvic-like fluorescence (FLF) of the influent. The prediction for DOC removal efficiency was improved by using multiple regression analyses based on some selected OM characteristics and mixed liquid suspended solid (MLSS).

A2/O공정과 수정 Phostrip공정과의 질소 및 인제거 특성비교 (Comparison of Phosphorus and Nitrogen Removal Characteristics between A2/O and Modified Phostrip Processes)

  • 김광수;김이태
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.664-668
    • /
    • 2005
  • An experimental study for the comparison of nitrogen and phosphorus removal efficiencies between $A^2/O$ and modified Phostrip (M-Phostrip process) were carried out with bench-scale reactors. In case of nitrogen removal efficiencies both of processes showed similar ones when influent organic loadings were high. However, M-phostrip process was more effective than $A^2/O$ at low organic loadings. This is why M-phostrip process consumes the whole mass of influent organics as a carbon sources for denitrification in anoxic reactor but the anoxic reactor of $A^2/O$ process utilizes the residual carbon followed by consumming a part of influent carbon for phosphorus release in anaerobic reactor. $A^2/O$ process required the influent COD/T-P and COD/TKN ratios were more than 56 and 10, respectively, to take place the phosphorus release in anaerobic process and phosphorus uptake in oxic process. However, the luxury uptake of phosphorus in M-phostrip process was not affected by influent COD/T-P and COD/TKN ratios and the adverse effect of nitrate in return sludge introduced to the p-stripper from the 2nd clarifier was not significant due to the configurational advantage of the p-stripper.

확률밀도함수 기반 유입하수 재현 및 활성슬러지공정 설계기법 개발 (Development of Application Method of Influent Wastewater Generation and Activated Sludge Process Design Based on Probability Density Function)

  • 유광태;김종락;윤주환;박기정
    • 한국물환경학회지
    • /
    • 제33권2호
    • /
    • pp.140-148
    • /
    • 2017
  • An important factor in determining the design and treatment efficiency of wastewater treatment plants (WWTPs) is the quantity and quality of influent. These detailed and accurate information is essential for process control, diagnosis and operation, as well as the basis in designing the plant, selecting the process and determining the optimal capacity of each bioreactor. Probabilistic models are used to predict the wastewater quantity and quality of WWTPs, which are widely used to improve the design and operation of WWTPs. In this study, the optimal probability distribution of time series influent data was derived for predicting water quantity and quality, and wastewater influent data were generated using the Monte Carlo simulation analysis. In addition, we estimated various alternatives for the improvement of bioreactor operations based on present operation condition using the generated influent data and activated sludge model, and suggested the alternative that can operate the most effectively. Thus, the influent quantity and quality are highly correlated with the actual operation data, so that the actual WWTPs influent characteristics were well reproduced. Using this will improve the operating conditions of WWTPs, and a proposed improvement plan for the current TMS (Tele Monitoring System) effluent quality standards can be made.

Dr. Wastewater program의 적용을 통한 하수처리장 운전에 미치는 유입수 변동 영향평가 (Evaluation of influent changing effect on the STP performance using Dr. Wastewater)

  • 김연권;김홍석;서인석;김병균;한인선;김진상
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.647-655
    • /
    • 2008
  • Sewer Rehabilitation Project (SRP) is planed, designed and constructed to perform its intended performance as sewerage delivery systems. Recently, a subject of performance evaluation methodology development for SRP has become a great deal of concern among researchers in Korea. From the view point of Sewage Treatment Plant (STP), however, the estimation of improvement efficiency for SRP is in lack of reliability due to the fact that affections for the treatment efficiency and operating condition are not reflected on SRP design and construction. In this study, statistical methodology was used in the analysis of data, which are taken during 1,186 days ($1^{st}$ Jan. 2005 - $31^{th}$ Mar. 2008) from the influent, effluent and operating conditions of full-scale STP($25,000m^3/d$). Then the effect of SRP on the influent characteristics and operating conditions changing was compared and evaluated. Results from the statistical evaluation show that SRP causes characteristic changes in influent and exerts a significant effect especially on the performance of STP.