• Title/Summary/Keyword: Influent

Search Result 842, Processing Time 0.029 seconds

A Study on Degradation of Nitrogen Compounds by Biofilm Reactor Packed with Porous Media (다공성 담체를 이용한 생물막 반응조의 질소화합물 분해에 관한 연구)

  • Cho, Hae-Mi;Kim, So-Yeon;Yoon, Ji-Hyun;Han, Gee-Bong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.776-780
    • /
    • 2007
  • A biofilm reactor packed with porous media was investigated for nitrogen removal of synthetic wastewater. The effect of different loading rates on the nitrification was sustained to be steady state with stable efficiency of 50~60% in the range of $0.0083{\sim}0.017gNH_4-N/gMLVSS{\cdot}day$ of F/MN ratio and $1{\sim}2kgNH_4-N/m^3{\cdot}day$ of media volumetric loading rate. However, nitrification efficiency was rapidly decreased to 25~30% as F/MN ratio and media volumetric loading rate were increased to the range of $0.025{\sim}0.034gNH_4-N/gMLVSS{\cdot}day$ and $3{\sim}4kgNH_4-N/m^3{\cdot}day$, respectively. Also the consumption rate of alkalinity was higher under 8 hours of HRT than unter 6 hours of HRT. Accordingly the influent loading rate variation by detention time with influent flow influenced more on the nitrification efficiency than the influent loading rate variation by the influent concentration did. The temperature effect on the nitrification showed 25% higher in summer than in winter as the results reported by other researchers who reported that the nitrification efficiency in biofilm showed 20% increase from 55% to 75% when the temperature was raised from $20^{\circ}C$ to $25^{\circ}C$. Denitrification with sulfur-media showed 90% removal efficiency under steady-state with no effect from the increase of influent concentration and empty bed contact time (EBCT) change such as EBCT was decreased from 8.4 hr to 4.3 hr and $NO_3-N$ loading rate was changed within the range of $0.1{\sim}0.4kgNO^3-N/m^3{\cdot}day$. Accordingly Denitrification with sulfur-media is feasible for post denitrification at the concentration less than $80mgNO^3-N/L$.

A Study on the Applicability of PDA Technique in the P-CAP System for T-P Removal of STP Effluent (하수처리장 방류수의 총인 제거를 위한 P-CAP 시스템에서 PDA 기법의 활용가능성에 대한 연구)

  • Choi, Choongho;Maeng, Sungkyu;Sim, Jaehwi;Choi, Jinho;Song, Kyungguen;Lee, Byungha;Cha, Hoyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.729-742
    • /
    • 2012
  • Recently, to using chemical coagulation process for T-P removal in STP effluent as tertiary treatment process is generalized in the country. The importance of analysis technique to save the treatment & maintenance cost during coagulation process is becoming more increased each day. Thus, it is necessary for the analysis technique during coagulation process to be presented well the characteristic of coagulation in field apply. There are a few analysis techniques such as Jar Test, zeta potential analysis and streaming current detecting techniques. But there are difficult to apply in field immediately due to long test time and difficult analysis techniques. And using PDA technique, it is reviewed applicability of the techniques as field index on pilot plant of P-CAP system The P-CAP system is composed of an in-line static mixer, a Flocculation Tank and the CAP reactor with 2 stage weir for effluent. Pre-test is performed to fix the mixing velocity in the Flocculation Tank using the PDA equipment and it fixed with 30RPM. Also, Jar Test is performed to select optimum dose of each coagulant for each T-P concentration level of influent. Result of continuous test on pilot plant of P-CAP system, the FSI in the Flocculation Tank is increased consistently by increasing each dosing concentration of coagulant such as LAS and PAC in the low level influent T-P concentration comparatively. It is considered that formed Al-hydroxide complexes for dosed coagulant are caused FSI variation. Furthermore, it seems that FSI value in the high level influent T-P concentration appeared lower than the opposite influent condition relatively because it is formed simultaneously Al-hydroxide complexes as solid type and Al-phosphorus complexes as soluble type. Thus, relation of FSI by PDA technique and T-P removal of final effluent on pilot plant of P-CAP system are very limited for the kind of coagulant and the characteristics of influent. And it though that FSI value by PDA technique with analyzing of turbidity in Flocculation Tank will be used restrictedly on field as the relative field-index.

A Study on Phosphorus and Nitrogen Removal with Unit Operation in the Ferrous Nutrient Removal Process (철전기분해장치(FNR)에서 단위공정에 따른 질소와 인의 제거)

  • Kim, Soo Bok;Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives: The purpose of this experiment was to illuminate the relationship between the phosphorus removal rate of unit operation and the phosphorus removal rate of phosphorus volume loading in the Ferrous Nutrient Removal process, which consists of an anoxic basin, oxic basin, and iron precipitation apparatus. Methods: This study was conducted in order to improve the effect of nitrogen and phosphorus removal in domestic wastewater using the FNR (Ferrous Nutrient Removal) process which features an iron precipitation reactor in anoxic and oxic basins. The average concentration of TN and TP was analyzed in a pilot plant ($50m^3/day$). Results: The removal rate of T-N and T-P were 66.5% and 92.8%, respectively. The $NH_3-N$ concentration of effluent was 2.62 mg/l with nitrification in the oxic basin even though the influent was 17.7 mg/l. The $NO_3$-N concentration of effluent was 5.83 mg/l through nitrification in oxic basin even though the influent and anoxic basin were 0.82 mg/l and 1.00 mg/l, respectively. The specific nitrification of the oxic basin ($mg.NH_3$-Nremoved/gMLVSSd) was 16.5 and specific de-nitrification ($mg.NO_3$-Nremoved/gMLVSSd) was 90.8. The T-P removal rate was higher in the oxic basin as T-P of influent was consumed at a rate of 56.3% in the anoxic basin but at 90.3% in the oxic basin. The TP removal rate (mg.TP/g.MLSS.d) ranged from 2.01 to 4.67 (3.06) as the volume loading of T-P was increased, Conclusions: The test results showed that the electrolysis of iron is an effective method of phosphorus removal. Regardless of the temperature and organic matter content of the influent, the quality of phosphorus in the treated water was both relatively stable and high due to the high removal efficiency. Nitrogen removal efficiency was 66.5% because organic matter from the influent serves as a carbon source in the anoxic basin.

Effects of MLSS Concentration and Influent C/N Ratio on the Nitrogen Removal Efficiency of Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactors (교차 간헐 포기식 부직포 여과막 생물반응조에서 MLSS 농도 및 유입수 C/N 비가 질소 제거효율에 미치는 영향)

  • Jung, Kyoung-Eun;Bae, Min-Su;Lee, Jong-Ho;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.501-510
    • /
    • 2006
  • To investigate the effects of MLSS concentration and influent C/N ratio on the nitrogen removal efficiency of alternately intermittently aerated nonwoven fabric filter bioreactors, the MLSS concentrations of the reactors were maintained at approximately 5,500 mg/L, 10,000 mg/L and 15,000 mg/L, and the influent TCOD/TKN ratio was decreased gradually from 5 to 2 by adding $NH_4Cl$. The influent was prepared by diluting a food waste leachate to a TCOD concentration of about 300 mg/L. The results of the experiment showed F/M ratios less than 0.112 g TCOD/g MLSS-day, average TCOD removal efficiencies of above 95%, and an average observed microbial yield coefficient of 0.283 g MLSS/g COD removed. The nitrification efficiencies were computed to be always better than 96% except one case where the nitrification efficiency was 90.5% when the MLSS concentration and the influent TCOD/TKN ratio was 5,500 mg/L and 2, respectively. The denitrification efficiency deteriorated as the influent TCOD/TKN ratio decreased. The average denitrification efficiency at the MLSS concentration of 10,000 mg/L was 10.7% better than that at the MLSS concentration of 5,500 mg/L, and the denitrification rate improved at a rate of 2.66 mg NL as the MLSS concentration increased by 1,000 mg/L. When the MLSS concentration was 15,000 mg/L, however, the average denitrification efficiency was merely 4.6% higher compared to when the MLSS concentration was 5,500 mg/L, and the denitrification rate increased at a rate of 0.75 mg N/L per 1,000 mg/L MLSS increase. Therefore, no strict proportional relationship was found between MLSS concentration and endogenous denitrification rate. The average alkalinity consumption rate was 3.36 mg alkalinity/mg T-N removed, which is similar to the theoretical value of 3.57 mg alkalinity/mg T-N removed, but the rate increased as the influent TCOD/TKN ratio decreased.

Effects of effluent recycling on the operating performance of UASB reactor (유출수 반송이 UASB 반응조 운전효율에 미치는 영향)

  • 이헌모;양병수
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.299-310
    • /
    • 1993
  • This study was aimed to evaluate the effects of effluent recycling on the UASB reactor performances at the various organic loading rates and influent substrate concentrations. The organic removal efficiency of the reactors operated with effluent recycle were above 85%. However, the efficiencies of the reactors operated without the recycle were below 40% even though the effort to increase the efficiencies was made by changing the influent substrate concentrations and the organic loading rates, and introducing the effluent recycle at the final stage of the experiment. It was realized that the certain amount of effluent recycling from the start-up stage in UASB reactors seemed to be necessary to provide the effective contact chances between the substrate and granular sludge for better performances of the UASB process.

  • PDF

A Study on Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(III) -Mathematical model for organic removal- (산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(III) -유기물 제거에 관한 수학적 모델-)

  • 안갑환;박상준;송승구
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.331-336
    • /
    • 1993
  • A mathematical model for organic removal efficiency was investigated in a fluidized bed biofilm reactor by changing the feed flow rate, the residence time and the recycle flow rate. In batch experiment, organic removal could be assumed as first order and an intrinsic first order rate constant(k1) was found $6.4{\times}^{-6}cm^3/mg{\cdot}sec$ at influent COD range of 3040 - 6620 mg/L. In continuous experiment, at the condition of the influent COD, 3040 mg/L, the superficial upflow velocity, 0.47 cm/sec, the biofilm thickness 336 ${\mu}m$ and the biofilm dry density 0.091 g/mL, the calculated COD removal efficiency from the mathematical model gave 60% which was very close to the observed value of 66 %. As the feed flow rate was increased, the COD removal efficiency was sharply decreased and at constant feed flow rate, the COD removal efficiency was decreased also as the residence time being decreased.

  • PDF

Effect of Substrate Concentration and Feeding Period Ratio on Sludge Granulation in UASB Process (UASB 공정에서 기질농도 및 기질주입 기간비가 슬러지 입상화에 미치는 영향)

  • 최영근;이헌모
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.113-124
    • /
    • 1997
  • The basic mechanism of the granular sludge formation which is the most important factor in the start-up and stable operators is not confirmed yet. In this study, the effect of granular sludge formation was investigated with the different substrate concentrations and the various ratios of substrate supply/deficiency. The granular sludge formation in the UASB reactor was closely related to the substrate concentrations and the ratio of substrate supply/deficlency The granular sludge formation was not accelerated at low substrate concentration. It was convinced that granular sludge formation was accelerated when the substrate supply with high concentration was stopped at UASB reactor. From this experiment, it was estimated that granular sludge was formed by the combination of hydrogen utilizing bacteria that form hydrogen condition and acid forming bacteria at substrate deficit condition by mutual symbiosis. Though the removal efficiency of organic matter was decreased as the influent substrate concentration was Increased, the higher the influent substrate the better the granular sludge formation.

  • PDF

The Nitrogen and Phosphorus Removal of Municipal Wastewater with CNR Process using Influent as a Carbon Source (유입수를 탄소원으로 이용한 CNR공법의 질소, 인의 제거특성)

  • 김영규;김인배;이영준
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.81-85
    • /
    • 2001
  • The aim of this study was to evaluate on the removal effect of total nitrogen and posphorus in municipal wastewater by decreasing hydraulic retention time(HRT) from 6 hour to 4 hour on CNR process using influent as a Carbon Source. CNR(Cilium Nutrient Romoval) is the process combining $A^2$/O process with cilium media of H2L corporation. The removal efficiencies for BOD$_{5}$, T-N and T-P were 81.1%, 61.4%, 61.4%, respectively. The removal efficiency of nitrogen and posphorus were low by decreasing hydraulic retention time(HRT) from 6 hour to 4 hour on CNR process.s.

  • PDF

Effect of the Liquid Circulation Velocity on the Biofilm Development in an IFBBR (역 유동층 생물막 반응기에서 액체순환속도가 생물막에 미치는 영향)

  • 김동석;윤준영
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 1994
  • Effect of the liquid circulation velocity on the biofilm development was investigated in an inverse fluidized bed biofilm reactor(IFBBR). To observe the effect of the influent COD concentration on biofilm simultaneously, the influent COD value was adjusted to 1000mg/1 f for 1st reactor, and 2500mg/l for 2nd reactor. The liquid circulation velocity was adjusted by controlling the initial liquid height. As the liquid circulation velocity was decreased, the settling amount of biomass was increased and the amount of effluent biomass was decreased. Since the friction of liquid was decreased by the decrease of liquid circulation velocity, the biofilm thickness was increased and the biofilm dry density was decreased. In the 1st reactor the SCOD removal efficiency was constant regardless of the variation of the liquid circulation velocity, but it was increased by the decrease of the liquid circulation velocity because of more biomass population in 2nd reactor.

  • PDF

Relationship Between C/N Ratio and Nitrogen Removal in Intermittently Aerated Activated Sludge System (간헐폭기 활성슬러지공정에서 C/N비와 질소제거의 관계)

  • 서인석;김병군;이상일
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.57-65
    • /
    • 1998
  • In this research, Effect of C/N ratio on nutrient removal in intermittently aerated activated sludge system(IAASS) was investigated with dormitary, building and swine wastewater. Three types (2-stage, 4-stage, modified) of IAASS were operated. Time interval of aeration/nonaeration in IAASS was 1hr/1hr. In treatment of Dormitary wastewater(BOD/T-N ratio : 4.4), Building wastewater (BOD/T-N ratio : 3.14) and swine wastewater(BOD/T-N ratio : 3.84), Nitrogen removal efficiency of 80, 70 and 90.4% was achieved, respectively. Nitrogen removal in IAASS was a great influenced on influent C/N ratio, efficient nitrogen removal was achieved at BOD/T-N ratio over 4. In IAASS operation, $\Delta $BOD mg/L/$\Delta $ nitrogen mg/L ratio was about 4-6. Simultaneous removal of organic, nitrogen and phosphorus in IAASS can achieved. And influent organic was efficiently utilized in denitrification. IAASS could be one of the best alternative process for the retrofit of conventional activated sludge system for the removal of nutrients.

  • PDF