• Title/Summary/Keyword: Influent

Search Result 845, Processing Time 0.023 seconds

Development of a WWTP influent characterization method for an activated sludge model using an optimization algorithm

  • You, Kwangtae;Kim, Jongrack;Pak, Gijung;Yun, Zuwhan;Kim, Hyunook
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 2018
  • Process modeling with activated sludge models (ASMs) is useful for the design and operational improvement of biological nutrient removal (BNR) processes. Effective utilization of ASMs requires the influent fraction analysis (IFA) of the wastewater treatment plant (WWTP). However, this is difficult due to the time and cost involved in the design and operation steps, thereby declining the simulation reliability. Harmony Search (HS) algorithm was utilized herein to determine the relationships between composite variables and state variables of the model IWA ASM1. Influent fraction analysis was used in estimating fractions of the state variables of the WWTP influent and its application to 9 wastewater treatment processes in South Korea. The results of influent $S_s$ and $Xs+X_{BH}$, which are the most sensitive variables for design of activated sludge process, are estimated within the error ranges of 8.9-14.2% and 3.8-6.4%, respectively. Utilizing the chemical oxygen demand (COD) fraction analysis for influent wastewater, it was possible to predict the concentrations of treated organic matter and nitrogen in 9 full scale BNR processes with high accuracy. In addition, the results of daily influent fraction analysis (D-IFA) method were superior to those of the constant influent fraction analysis (C-IFA) method.

A Studies on Removal of Nutrient Material by Using Dropwort Field (미나리꽝을 이용한 영양물질제거에 관한 연구)

  • 이영신;김창회
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.16-20
    • /
    • 2003
  • Nitrogen(N) and phosphorus(P) in surface streams mainly lead to euthrophication. It aggravates water quality and consequently increases the purification costs. As a resolution of water contamination caused by household drainage through irrigation route by 70% of the 1,300 community residents in Eum-Am Myun, Seo-San city, was implemented biological self-purification method by growing Oenanthe Javanica along the polluted water tunnel. The contaminated water was efficiently purified after passing the dropwort field; DO conc. of effluent water was increased 8.3∼61.9% after through the drop wort field. HRT of experiment system was changed 0.05∼1.50/day. 50% of BOD was eliminated at the range above 12 mg/l of Influent BOD conc. Also, 50% of COD was eliminated at the range above 30 mg/l of Influent COD conc. Finnally, the influent T-N loading at range below 1.5 g/m$^3$/d reduced 50% of Influent T-N conc., and so did influent T-P loading at the range below 0.03 g/m$^3$/dwas reduced 50% of Influent T-P conc.

Variation of Phosphorus and Nitrogen Removal Characteristics According to the Decrease of Influent Phosphorus Concentration in SBR and SBBR (SBR과 SBBR에서 유입 인 농도 감소에 따른 인과 질소의 제거 특성 변화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.483-490
    • /
    • 2010
  • The purpose of this study is to investigate the effect of influent phosphorus concentration on the nitrogen and phosphorus removal in sequencing batch reactor(SBR) and sequencing batch biofilm reactors(SBBRs) in order to recover the enhanced biological phosphorus removal (EBPR) capacity at the sludge of the deterioration of EBPR capacity. In SBBRs, comparing to SBR, the organic removal was occurred actively at the 1 st non-aeration period because of the active phosphorus release at this period. However, the variation of TOC removal according to the decrease of influent phosphorus concentration was not clearly shown both in SBR and SBBRs. In case of SBR losing EBPR capacity, the EBPR capacity was not recovered by the decrease of the influent phosphorus concentration from 7.5 mg/L to 0.9 mg/L. The nitrogen removal increased by the decrease of influent phosphorus concentration both in SBR and SBBRs.

Nitritation Characteristics Depending on Influent Nitrogen Concentration in a Biological Aerated Filter (Biological Aerated Filter에서 유입 질소농도에 따른 아질산화 특성)

  • Yoo, Ik-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The purpose of this study was to investigate the nitrification characteristics of biological aerated filter (BAF) packed with ceramic media, especially focusing on nitrite build-up during nitrification. When increasing the nitrogen load above $1.63kgNH_4{^+}-N/m^3{\cdot}d$, ammonium removal efficiency decreased to less than 60% and the nitrite ratio ($NO_2{^-}-N/NO_x-N$) of higher than 75% was achieved due to the inhibitory free ammonia (FA, $NH_3-N$) concentration and oxygen limitation. FA inhibition, however, is not recommended strategy to promote nitrite build-up since FA concentration in the reactor is coupled with decreased ammonium removal efficiency. Nitrite ratio in the effluent was also affected by aeration rate and influent ammonium concentration. Ammonium oxidation was enhanced at a higher aeration rate regardless of influent ammonium concentration but, the nitrite ratio was dependent on both aeration rate and influent ammonium concentration. While a higher nitrite ratio was obtained when BAFs were fed with $50mgNH_4{^+}-N/L$ of influent, the nitrite ratio significantly decreased for a greater influent concentration of $200-300mgNH_4{^+}-N/L$. Taken together, aeration rate, influent ammonium concentration and FA concentrations kept in the BAF were found to be critical variables for nitrite accumulation in the BAF system.

Development of Application Method of Influent Wastewater Generation and Activated Sludge Process Design Based on Probability Density Function (확률밀도함수 기반 유입하수 재현 및 활성슬러지공정 설계기법 개발)

  • You, Kwangtae;Kim, Jongrack;Yun, Zuhwan;Pak, Gijung
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.140-148
    • /
    • 2017
  • An important factor in determining the design and treatment efficiency of wastewater treatment plants (WWTPs) is the quantity and quality of influent. These detailed and accurate information is essential for process control, diagnosis and operation, as well as the basis in designing the plant, selecting the process and determining the optimal capacity of each bioreactor. Probabilistic models are used to predict the wastewater quantity and quality of WWTPs, which are widely used to improve the design and operation of WWTPs. In this study, the optimal probability distribution of time series influent data was derived for predicting water quantity and quality, and wastewater influent data were generated using the Monte Carlo simulation analysis. In addition, we estimated various alternatives for the improvement of bioreactor operations based on present operation condition using the generated influent data and activated sludge model, and suggested the alternative that can operate the most effectively. Thus, the influent quantity and quality are highly correlated with the actual operation data, so that the actual WWTPs influent characteristics were well reproduced. Using this will improve the operating conditions of WWTPs, and a proposed improvement plan for the current TMS (Tele Monitoring System) effluent quality standards can be made.

Study on the Relationship between Weather Conditions, Sewage and Operational Variables of WWTPs using Multivariate Statistical Methods (기상조건이 하수발생량 및 하수처리장 운전인자에 미치는 영향에 관한 통계적 분석)

  • Lee, Jae-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.285-291
    • /
    • 2012
  • Generally, the rainfall and the influent of wastewater treatment plants (WWTPs) have strong relationship at the case of combined sewers. With the fact that the influent variations in terms of quantity and sewage quality is the most common and significant disturbance, the impact factor to the characteristics of sewage should be searched for. In this paper, the relationship between weather conditions such as humidity, temperature and rainfall and influent flowrate and contaminant concentration was analysed using factor analysis. Additionally, 3 influent types were deduced using cluster analysis and the distributions of operational variables were compared to the each groups by one-way ANOVA. The applied dataset were clustered to three groups that have the similar weather and influent conditions. These different conditions can cause the different operating conditions at WWTPs. That is, the Group 1 is for the condition with high humidity and rainfall, so DO concentration in the reactor was very high but MLSS concentration was very low because of too large flowrate. However, the Group 3 is classified to the case having low humidity, temperature, and rainfall, therefore, the SRT was the longest and the SVI was the highest due to the worst settleability in the winter for a year.

Comparison of Phosphorus and Nitrogen Removal Characteristics between A2/O and Modified Phostrip Processes (A2/O공정과 수정 Phostrip공정과의 질소 및 인제거 특성비교)

  • Kim, Kwang-Soo;Kim, I-Tai
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.664-668
    • /
    • 2005
  • An experimental study for the comparison of nitrogen and phosphorus removal efficiencies between $A^2/O$ and modified Phostrip (M-Phostrip process) were carried out with bench-scale reactors. In case of nitrogen removal efficiencies both of processes showed similar ones when influent organic loadings were high. However, M-phostrip process was more effective than $A^2/O$ at low organic loadings. This is why M-phostrip process consumes the whole mass of influent organics as a carbon sources for denitrification in anoxic reactor but the anoxic reactor of $A^2/O$ process utilizes the residual carbon followed by consumming a part of influent carbon for phosphorus release in anaerobic reactor. $A^2/O$ process required the influent COD/T-P and COD/TKN ratios were more than 56 and 10, respectively, to take place the phosphorus release in anaerobic process and phosphorus uptake in oxic process. However, the luxury uptake of phosphorus in M-phostrip process was not affected by influent COD/T-P and COD/TKN ratios and the adverse effect of nitrate in return sludge introduced to the p-stripper from the 2nd clarifier was not significant due to the configurational advantage of the p-stripper.

Effects of Influent Flow Distribution Ratio and HRT on Sewage Treatment Efficiency of the ASA Process (유입수 분배비와 체류시간이 ASA 공정의 가정오수 처리효율에 미치는 영향)

  • Yang, Eun-Gyoung;Sung, Il-Wha
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.13-24
    • /
    • 2009
  • This study was performed to determine the effect of the influent flow distribution ratio and hydraulic retention time(HRT) on removal of organic matter, nitrogen and phosphorus when domestic sewage was treated by the advanced step aeration(ASA) process. Results of the experiment for the determination of the optimum influent flow distribution ratio between the anaerobic reactor and the anoxic reactor showed BOD removal efficiencies of above 92.0% at all influent flow distribution ratios from 9:1 to 4:6. The highest T-N removal efficiency was 82.6% at the influent flow distribution ratio of 6:4. On the other hand, the highest T-P removal efficiency was 67.8% at the influent flow distribution ratio of 9:1. Considering both the T-N and T-P removal efficiencies, the influent distribution ratio of 6:4 was considered the optimum. Results of the experiment for the determination of the optimum HRT at the optimum influent flow distribution ratio of 6:4 revealed BOD removal efficiencies better than 92.7% at all HRTs from 12hr down to 6hr. The highest T-N and T-P removal efficiency were 82.6% and 59.5%, respectively both at the HRT of 8hr. In conclusion, the optimum influent flow distribution ratio and HRT for treatment of domestic sewage by the ASA process were determined to be 6:4 and 8hr, respectively.

An Assessment Model on Sustainability of Local City (지방도시의 지속가능성 평가모형)

  • Hong, Young-Rok;Kwon, Sang-Zoon;Myung, Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.4
    • /
    • pp.1-12
    • /
    • 1999
  • This study aims to find basic data for using the quantitative assessment of the sustainability and establishing the systematic index of the planning for local cities to consider the environmentally sound and sustainable development. The research designs to review professional responding to surveys preceded by separate questionnaires and interviews from book reviews, and suggests to make an assessment model of the sustainability for local cities. The research found consequently as follows. Firstly, the research survey items were decides totally 52, grouped 9 assessmental issues and distributed under 4 assessmental domains for the sustainability from the references of book reviews. Secondly, the research result concentrated on the followings from the professional responding to surveys. 1. A most influent factor is the distribution of animals and plants in a nature domain. The next influent factors are the ratio of mass-transportation systems, the numbers of the species of animals and plants, the acreage of conservative forestry, the numbers of reused water resources, and the usage number of water supply, orderly in the nature domain. 2. A most influent factor is the usage number of synthetic detergents in a pollution domain. The next influent factors are the volume of waste water, the number of registered vehicles, the degree of soil pollution, and the charge of development imposition, orderly in the pollution domain. 3. A most influent factor is the acreage of athletic facilities, in an urban domain. the next influent factors are the acreage of recreational facilities, the number and acreage of cultural assets, the number of cultural facilities, the acreage of landscape conservation area, the charge of cultural asset management, orderly in the urban domain. 4. A most influent factor is the number of waste disposal facilities in a participation domain. The next influent factors are the capacity of reused waste, the usage of synthetic detergents, the ratio of waste water disposal, orderly in the participation domain. 5. A most contributed influent domain to the assessment of the sustainability for local cities is the urban domain. The next influent domains are nature domain, participation domain, and pollution domain, orderly in the contribution of the assessment of the sustainability. But, the pollution domain is little relationship with the sustainability. Therefore, it is clear that the abundant greens and the improved level of culture are dominant influences on the sustainabiligy, as like improving the ratio of roadside trees, the acreage of parks, and enlarging the number of cultural facilities.

  • PDF

Feasibility Study of Constructed Wetland for the Wastewater Treatment in Rural Area (인공습지의 농촌지역 오수정화시설에 적용가능성 연구)

  • 윤춘경;권순국;권태영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.83-92
    • /
    • 1998
  • Field experiment was performed from August 1996 to January 1998 to examine the applicability of constructed wetland system for wastewater treatment in rural area. The pilot plant was installed in Kon-Kuk University and the school building septic tank effluent was used as an influent to the treatment basin. Hydraulic loading rate was about 0.1 6$0.16^3/m^2$ day and theoretical detention time in the system was 1.38 days. The treatment basin was composed of sand and reed. The influent DO concentration was low and many cases close to zero, but effluent concentration was higher than the influent which implies that oxygen was supplied naturally. The average concentration of influent BOD was 126mg/L, and with average removal rate of 69 % the average effluent concentration was 4Omg/L which satisfied the effluent water quality standard for the system of interest. The average influent concentration of COD was 2Olmg/L and average effluent concentration was 75mg/L with average removal rate of 60%. The performance of BOD and COD tends to deteriorate in the low temperature, and appropriate action needs to be taken during the cold winter time for stable operation. The average influent concentration of SS was 5Omg/L, and effluent was 1 1mg/L with average removal rate of 76% which satisfied the effluent water quality standard for the system of interest. The results for the regulated components, SOD and SS, from the experiment showed that constructed wetland system can meet the effluent water quality standards. The average influent concentration of total phosphorus was 25.6mg/L and average effluent concentration was 7.8mg/L with average removal rate of 63%. Not like the performance of the above components, average nitrogen removal rate was only 11.2% which is not satisfactory. Although, nitrogen is not regulated at this moment, it can cause many environmental problems including eutrophication. Therefore, nitrogen removal efficiency should be improved for actual application. From the result of the field experiment, constructed wetland system was thought to be an appropriate alternative for wastewater treatment in rural area.

  • PDF