• Title/Summary/Keyword: Influence of form errors

Search Result 23, Processing Time 0.028 seconds

A Study on the Effect of the Sensor Gain Error in the Precision Measurement of Straightness Error Using Mixed Sequential Two-Probe Method (혼합축차이점법을 이용한 진직도 정밀측정에 있어서 센서 게인오차의 영향에 관한 연구)

  • Jeong, Ji Hun;Oh, Jeong Seok;Kihm, Gyungho;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.607-614
    • /
    • 2013
  • In this study, effect of the sensor gain error is theoretically analyzed and simulated when mixed sequential two-prove method(MTPM) is applied for the precision measurement of straightness error of a linear motion table. According to the theoretical analysis, difference of the gain errors between two displacement sensors increases measurement error dramatically and alignment error of the straightedge is also amplified by the sensor gain difference. On the other hand, if the gain errors of the two sensors are identical, most of error terms are cancelled out and the alignment error doesn't give any influence on the measurement error. Also the measurement error of the straightness error is minimized compared with that of the straightedge's form error owing to close relationship between straightness error and angular motion error of the table in the error terms.

New Parametric Affine Modeling and Control for Skid-to-Turn Missiles (STT(Skid-to-Turn)미사일의 매개변수화 어파인 모델링 및 제어)

  • Chwa, Dong-Kyoung;Park, Jin-Young;Kim, Jinho;Song, Chan-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.727-731
    • /
    • 2000
  • This paper presents a new practical autopilot design approach to acceleration control for tail-controlled STT(Skid-to-Turn) missiles. The approach is novel in that the proposed parametric affine missile model adopts acceleration as th controlled output and considers the couplings between the forces as well as the moments and control fin deflections. The aerodynamic coefficients in the proposed model are expressed in a closed form with fittable parameters over the whole operating range. The parameters are fitted from aerodynamic coefficient look-up tables by the function approximation technique which is based on the combination of local parametric models through curve fitting using the corresponding influence functions. In this paper in order to employ the results of parametric affine modeling in the autopilot controller design we derived a parametric affine missile model and designed a feedback linearizing controller for the obtained model. Stability analysis for the overall closed loop sys-tem is provided considering the uncertainties arising from approximation errors. the validity of the proposed modeling and control approach is demonstrated through simulations for an STT missile.

  • PDF

Experimental and Numerical Study of Cold Ironing as a Post-Process of Net-Shape Manufacture of Gears (기어 정밀정형 성형을 위한 후 공정으로서의 냉간 아이어닝 공정에 대한 연구)

  • Chang, Yu-Chul;Park, Chul-Sung;Kim, Byung-Min;T.A. Dean;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2096-2103
    • /
    • 2002
  • Cold ironing, as a post-forging operation of warm forged gears, needs a clear understanding of form errors due to die-elasticity and springback of component. In order to simplify the analysis of cold ironing, a single tooth instead of a whole gear component was investigated. The influence of initial surface roughness, die design, and die/workpiece interference has been examined experimentally and numerically. As a result the changes in geometrical profile, dimensions, and surface finish in a single tooth were observed. This study demonstrates that predicted dimensions can be achieved and surface finish also can be greatly improved.

Improving CMD Areal Density Analysis: Algorithms and Strategies

  • Wilson, R.E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • Essential ideas, successes, and difficulties of Areal Density Analysis (ADA) for color-magnitude diagrams (CMD's) of resolved stellar populations are examined, with explanation of various algorithms and strategies for optimal performance. A CMD-generation program computes theoretical datasets with simulated observational error and a solution program inverts the problem by the method of Differential Corrections (DC) so as to compute parameter values from observed magnitudes and colors, with standard error estimates and correlation coefficients. ADA promises not only impersonal results, but also significant saving of labor, especially where a given dataset is analyzed with several evolution models. Observational errors and multiple star systems, along with various single star characteristics and phenomena, are modeled directly via the Functional Statistics Algorithm (FSA). Unlike Monte Carlo, FSA is not dependent on a random number generator. Discussions include difficulties and overall requirements, such as need for fast evolutionary computation and realization of goals within machine memory limits. Degradation of results due to influence of pixelization on derivatives, Initial Mass Function (IMF) quantization, IMF steepness, low Areal Densities ($\mathcal{A}$), and large variation in $\mathcal{A}$ are reduced or eliminated through a variety of schemes that are explained sufficiently for general application. The Levenberg-Marquardt and MMS algorithms for improvement of solution convergence are contained within the DC program. An example of convergence, which typically is very good, is shown in tabular form. A number of theoretical and practical solution issues are discussed, as are prospects for further development.

An active stereo camera modeling (동적 스테레오 카메라 모델링)

  • Do, Kyoung-Mihn;Lee, Kwae-Hi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.297-304
    • /
    • 1997
  • In stereo vision, camera modeling is very important because the accuracy of the three dimensional locations depends considerably on it. In the existing stereo camera models, two camera planes are located in the same plane or on the optical axis. These camera models cannot be used in the active vision system where it is necessary to obtain two stereo images simultaneously. In this paper, we propose four kinds of stereo camera models for active stereo vision system where focal lengths of the two cameras are different and each camera is able to rotate independently. A single closed form solution is obtained for all models. The influence of the stereo camera model to the field of view, occlusion, and search area used for matching is shown in this paper. And errors due to inaccurate focal length are analyzed and simulation results are shown. It is expected that the three dimensional locations of objects are determined in real time by applying proposed stereo camera models to the active stereo vision system, such as a mobile robot.

  • PDF

An Influence of Visualization on Geometric Problem Solving in the Elementary Mathematics (시각화가 초등기하문제해결에 미치는 영향)

  • Yun, Yea-Joo;Kang, Sin-Po;Kim, Sung-Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.4
    • /
    • pp.655-678
    • /
    • 2010
  • In the elementary mathematics, geometric education emphasize spatial sense and understandings of figures through development of intuitions in space. Especially space visualization is one of the factors which try conclusion with geometric problem solving. But studies about space visualization are limited to middle school geometric education, studies in elementary level haven't been done until now. Namely, discussions about elementary students' space visualization process and methods in plane or space figures is deficient in relation to geometric problem solving. This paper examines these aspects, especially in relation to plane and space problem solving in elementary levels. First, we investigate visualization methods for plane problem solving and space problem solving respectively, and analyse in diagram form how progress understanding of figures and visualization process. Next, we derive constituent factor on visualization process, and make a check errors which represented by difficulties in visualization process. Through these analysis, this paper aims at deriving an influence of visualization on geometric problem solving in the elementary mathematics.

  • PDF

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

A Study on the Effect of Shrinkage on Lens Deformation in Optical Lens Manufacturing Process Using Thermosetting Resin Material (열경화성 수지 재료를 이용한 광학 렌즈 제조공정에서 렌즈 변형에 대한 수축률이 영향에 관한 연구)

  • Park, Si Hwan
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2022
  • In order to reduce the manufacturing costs of the glass lens, it is necessary to manufacture a lens using a UV curable resin or a thermosetting resin, which is a curable material, in order to replace a glass lens. In the case of forming a lens using a thermosetting material, it is necessary to form several lenses at once using the wafer-level lens manufacturing technologies due to the long curing time of the material. When a lens is manufactured using a curable material, an error in the shape of the lens due to the shrinkage of the material during the curing process is an important cause of defects. The major factors for these shape errors and deformations are the shrinkage and the change of mechanical properties in the process of changing from a liquid material during curing to a solid state after complete curing. Therefore, it is necessary to understand the curing process of the material and to examine the shrinkage rate and change of physical properties according to the degree cure. In addition, it is necessary to proceed with CAE for lens molding using these and to review problems in lens manufacturing in advance. In this study, the viscoelastic properties of the material were measured during the curing process using a rheometer. Using the results, Rheological investigation of cure kinetics was performed. At the same time, The shrinkage of the material was measured and simple mathematical models were created. And using the results, the molding process of a single lens was analyzed using Comsol, a commercial S/W. In addition, the experiment was conducted to compare and verify the CAE results. As a result, it was confirmed that the shrinkage rate of the material had a great influence on the shape precision of the final product.

STANDARDISATION OF NIR INSTRUMENTS, INFLUENCE OF THE CALIBRATION METHODS AND THE SIZE OF THE CLONING SET

  • Dardenne, Pierre;Cowe, Ian-A.;Berzaghi, Paolo;Flinn, Peter-C.;Lagerholm, Martin;Shenk, John-S.;Westerhaus, Mark-O.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1121-1121
    • /
    • 2001
  • A previous study (Berzaghi et al., 2001) evaluated the performance of 3 calibration methods, modified partial least squares (MPLS), local PLS (LOCAL) and artificial neural networks (ANN) on the prediction of the chemical composition of forages, using a large NIR database. The study used forage samples (n=25,977) from Australia, Europe (Belgium, Germany, Italy and Sweden) and North America (Canada and U.S.A) with reference values for moisture, crude protein and neutral detergent fibre content. The spectra of the samples were collected using 10 different Foss NIR Systems instruments, only some of which had been standardized to one master instrument. The aim of the present study was to evaluate the behaviour of these different calibration methods when predicting the same samples measured on different instruments. Twenty-two sealed samples of different kind of forages were measured in duplicate on seven instruments (one master and six slaves). Three sets of near infrared spectra (1100 to 2500nm) were created. The first set consisted of the spectra in their original form (unstandardized); the second set was created using a single sample standardization (Clone1); the third was created using a multiple sample procedure (Clone6). WinISI software (Infrasoft International Inc., Port Mathilda, PA, USA) was used to perform both types of standardization, Clone1 is just a photometric offset between a “master” instrument and the “slave” instrument. Clone6 modifies both the X-axis through a wavelength adjustment and the Y-axis through a simple regression wavelength by wavelength. The Clone1 procedure used one sample spectrally close to the centre of the population. The six samples used in Clone 6 were selected to cover the range of spectral variation in the sample set. The remaining fifteen samples were used to evaluate the performances of the different models. The predicted values for dry matter, protein and neutral detergent fibre from the master Instrument were considered as “reference Y values” when computing the statistics RMSEP, SEPC, R, Bias, Slope, mean GH (global Mahalanobis distance) and mean NH (neighbourhood Mahalanobis distance) for the 6 slave instruments. From the results we conclude that i) all the calibration techniques gave satisfactory results after standardization. Without standardization the predicted data from the slaves would have required slope and bias correction to produce acceptable statistics. ii) Standardization reduced the errors for all calibration methods and parameters tested, reducing not only systematic biases but also random errors. iii) Standardization removed slope effects that were significantly different from 1.0 in most of the cases. iv) Clone1 and Clone6 gave similar results except for NDF where Clone6 gave better RMSEP values than Clone1. v) GH and NH were reduced by half even with very large data sets including unstandardized spectra.

  • PDF

Structural Safety Assessment Using Equation Error Function and Response Error Function (방정식 오차함수와 응답 오차함수를 사용한 구조 안전성 평가)

  • Park, Woo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2819-2830
    • /
    • 2009
  • Load bearing structural members in a wide variety of applications accumulate damage over their service life. During experiment much effort and cost is needed for measuring structural safety assessment. The sparseness and errors of measured data have to be considered during the safety estimation of structures. This paper introduces parameter estimation and damage identification algorithm by a system identification using static and dynamic response. The equation error estimator and response error widely used in system identification are based on the minimization of least squared error between measured and calculated responses by a mathematical model of a structure. Since each estimator has a specific form of application in noisy environment and proposes different definitions for these forms. To study the behaviour of the estimators in noisy environment Using Monte Carlo simulation, and a data measured pertubation scheme is adopted to investigate the influence of measurement errors on identification results. The assessment result by static and dynamic response were compared, and the efficiency and applicabilities of the proposed algorithm are demonstrated through simulated static and dynamic responses of a dimensional truss type structures.