• 제목/요약/키워드: Inflammatory factors

검색결과 934건 처리시간 0.028초

STUDIES OF ACNE TREATMENT USING ORIENTAL HERBS(New Approach to select anti-acne agents)

  • Nam, Chun-Ja;Han, Y.G.;Kim, S.J.;Kim, J.H.;Oh, J.Y.;Park, J.W.;Lee, H.
    • 대한화장품학회지
    • /
    • 제25권4호
    • /
    • pp.111-121
    • /
    • 1999
  • Acne vulgaris, the most common skin disease. can be formed as only a few comedons or severe inflammatory lesions. The pathogenesis of acne involves various factors; excessive androgen, excessive sebum production, abnormal alteration of follicular epithelium, proliferation of Propionibacterium acnes, and inflammation. We investigated acne therapy using oriental herbs described in the Korean traditional medical book(Dong-ui-bo-gam). Oriental herbs(Angelica daurica, Arctium lappa, Coptidis rhizoma, and Glycyrrhiza glabra) were chosen based on their respective property of sebum control, anti-inflammatory activity, and anti-bacterial activity. We examined the effect of acne treatment, in terms of chemotactic inhibition, lipogenesis inhibition, and anti-bacterial activity for P. acnes. 1. Neutrophil chemotaxis assay; P. acnes secrete chemotactic factors and other pro-inflammatory extracellular products. Neutrophil chemotactic activity of P. acnes was measured by 48-well chemotaxis method. Angelica daurica clearly suppressed chemotactic activity of P. acnes. 2. Using sebaceous gland of hamster ear lipogenesis assay; Sebaceous lipogenesis was measured using ear biopsies by incubation or $C^{14}$-acetate in culture media. The $C^{14}$-labeled lipids were extracted and determined by liquid scintilation counting. Coptidis rhizoma markedly inhibited sebum production. 3. Anti-bacterial assay for P. acnes(MIC test); Glycyrrhiza glabra showed anti-bacterial activity. P. acnes did not develop resistance against Glycyrrhiza glabra. Retinoids are effectively to inhibit sebum production and regulate follicular keratinization process, with little anti-inflammatory activity. Angelica daurica suppressed neutrophil chemotaxis, Coptidis rhizoma inhibited sebum production, and Glycyrrhiza glabra showed anti-bacterial activity against P. acnes. A combined formulation of Angelica daurica, Coptidis rhizoma. and Glycyrrhiza glabra is expected to provide effective acne treatment.

  • PDF

Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-${\kappa}B$/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • 제7권6호
    • /
    • pp.423-429
    • /
    • 2013
  • Luteolin is a flavonoid found in abundance in celery, green pepper, and dandelions. Previous studies have shown that luteolin is an anti-inflammatory and anti-oxidative agent. In this study, the anti-inflammatory capacity of luteolin and one of its glycosidic forms, luteolin-7-O-glucoside, were compared and their molecular mechanisms of action were analyzed. In lipopolysaccharide (LPS)-activated RAW 264.7 cells, luteolin more potently inhibited the production of nitric oxide (NO) and prostaglandin E2 as well as the expression of their corresponding enzymes (inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) than luteolin-7-O-glucoside. The molecular mechanisms underlying these effects were investigated to determine whether the inflammatory response was related to the transcription factors, nuclear factor (NF)-${\kappa}B$ and activator protein (AP)-1, or their upstream signaling molecules, mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K). Luteolin attenuated the activation of both transcription factors, NF-${\kappa}B$ and AP-1, while luteolin-7-O-glucoside only impeded NF-${\kappa}B$ activation. However, both flavonoids inhibited Akt phosphorylation in a dose-dependent manner. Consequently, luteolin more potently ameliorated LPS-induced inflammation than luteolin-7-O-glucoside, which might be attributed to the differentially activated NF-${\kappa}B$/AP-1/PI3K-Akt pathway in RAW 264.7 cells.

Ursodeoxycholic Acid Inhibits Pro-Inflammatory Repertoires, $IL-1{\beta}$ and Nitric Oxide in Rat Microglia

  • Joo, Seong-Soo;Kang, Hee-Chul;Won, Tae-Joon;Lee, Do-ik
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1067-1073
    • /
    • 2003
  • Ursodeoxycholic acid (UDCA) is a non-toxic, hydrophilic bile acid in widespread clinical use mainly for acute and chronic liver disease. Recently, treatment with UDCA in hepatic graft-versus-host disease has been given in immunosuppressive therapy for improvement of the biochemical markers of cholestasis. Moreover, it has been reported that UDCA possesses immunomodulatory effects by the suppression of cytokine production. In the present study, we hypothesized that UDCA may inhibit the production of the pro-inflammatory cytokine, IL-1$\beta$, and nitric oxide (NO) in microglia. In the study, we found that 100 $\mu$ g/mL UDCA effectively inhibited these two pro-inflammatory factors at 24 hand 48 h, compared to the $A\beta$42-pretreated groups. These results were compared with the LPS+UDCA group to confirm the UDCA effect. As microglia can be activated by several stimulants, such as $A\beta$42, in Alzheimers brain and can release those inflammatory factors, the ability to inhibit or at least decrease the production of IL-1$\beta$ and NO in Alzheimers disease (AD) is essential. Using RT-PCR, ELISA and the Griess Reagent System, we therefore found that UDCA in $A\beta$42 pre-treated cultures played a significant role in suppressing the expression or the production of IL-1$\beta$ and NO. Similarly, lipopolysaccharide (LPS) did not activate microglia in the presence of UDCA. Moreover, we found that UDCA exhibits a prolonged effect on microglial cells (up to 48 h), which suggests that UDCA may play an important role in chronic cell damage due to this long effect. These results further imply that UDCA could be an important cue in suppressing the microglial activation stimulated by massive AD peptides in the AD progressing brain.

STUDIES OF ACNE TREATMENT USING ORIENTAL HERBS (New Approach to select anti-acne agents)

  • Chunja Nam;Y.G. Han;Kim, S.J.;Kim, J.H.;Oh, J.Y.
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 1999년도 IFSCC . ASCS 학술대회 발표 논문
    • /
    • pp.111-121
    • /
    • 1999
  • Acne vulgaris, the most common skin disease. can be formed as only a few comedons or severe inflammatory lesions. The pathogenesis of acne involves various factors; excessive androgen, excessive sebum production, abnormal alteration of follicular epithelium, proliferation of Propionibacterium acnes, and inflammation. We investigated acne therapy using oriental herbs described in the Korean traditional medical book (Dong-ui-bo-gam). Oriental herbs (Angleica daurica. Arctium lappa. Coptidis rhizoma, and glycyrrhiza glabra) were chosen based on their respective property of sebum control, anti-inflammatory activity, and anti-bacterial activity. We examined the effect of acne treatment, in terms of chemotactic inhibition, lipogenesis inhibition, and anti-bacterial activity for P. acnes. 1. Neutrophil chemotaxis assay ; P acnes secrete chemotactic factors and other pro-inflammatory extracellular products. Neutrophil chemotactic activity of P. acnes was measured by 48-well chemotaxis method. Angelica daurica clearly suppressed chemotactic activity of P. acens. 2. Using sebaceous gland of hamster ear lipogenesis assay; Sebaceous lipogenesis was measured using ear biopsies by incubation of $C^{14}$ -acetate in culture media. The $C^{14}$ -labeled lipids were extracted and determined by liquid scintilation counting, Coptidis rhizoma markedly inhibited sebum production, 3. Anti-bacterial assay for P. acnes (MIC test) Glycyrrhiza glabra showed anti-bacterial activity. P. acnes did not develop resistance against Glycyrrhiza glabra. Retinoids are effectively to inhibit sebum production and regulate follicular keratinization process, with little anti-inflammatory activity. Angelica daurica suppressed neutrophil chemotaxis. Coptidis rhizoma inhibited sebum production, and Glycyrrhiza glabra showed anti-bacterial activity against P. acnes. A combined formulation of Angelica daurica. Coptidisr hizoma and Glycyrrhiza glabra is expected to provide effective acne treatment.ent.ive acne treatment.

  • PDF

The effect of genistein on insulin resistance, inflammatory factors, lipid profile, and histopathologic indices in rats with polycystic ovary syndrome

  • Amanat, Sasan;Ashkar, Fatemeh;Eftekhari, Mohammad Hassan;Tanideh, Nader;Doaei, Saeid;Gholamalizadeh, Maryam;Koohpeyma, Farhad;Mokhtari, Maral
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권3호
    • /
    • pp.236-244
    • /
    • 2021
  • Objective: Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, irregular menstruation, ovulatory dysfunction, and insulin resistance. Recent studies have reported the possible role of phytoestrogens in PCOS. This animal study aimed to evaluate the effects of genistein on insulin resistance, inflammatory factors, lipid profile, and histopathologic indices on PCOS. Methods: PCOS was induced by 1 mg/kg of letrozole in adult Sprague-Dawley rats. The rats then received normal saline (PCOS group), 150 mg/kg of metformin, or 20 mg/kg of genistein dissolved in 1% methylcellulose solution for 42 days. Body weight, the glycemic and lipid profile, and inflammatory, antioxidative, and histopathological parameters were assessed at the end of the intervention. Results: Treatment with genistein significantly alleviated the increased level of fasting blood insulin (p=0.16) and the homeostatic model assessment of insulin resistance (p=0.012). In addition, the genistein group had significantly lower levels of serum malondialdehyde (p=0.039) and tumor necrosis factor-alpha (p=0.003), and higher superoxide dismutase enzyme activity (p<0.001). Furthermore, the histopathological analysis indicated that genistein administration led to an increase in luteinization and the development of fewer cysts (p<0.05). Conclusion: Biochemical and histopathological analyses indicated that genistein administration to rats with PCOS induced significant remission in oxidative, inflammatory, and glycemic and histopathologic parameters.

Korean ginseng extract ameliorates abnormal immune response through the regulation of inflammatory constituents in Sprague Dawley rat subjected to environmental heat stress

  • Song, Ji-Hyeon;Kim, Kui-Jin;Choi, Seo-Yun;Koh, Eun-Jeong;Park, JongDae;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.252-260
    • /
    • 2019
  • Background: Increases in the average global temperature cause heat stress-induced disorders by disrupting homeostasis. Excessive heat stress triggers an imbalance in the immune system; thus protection against heat stress is important to maintain immune homeostasis. Korean ginseng (Panax ginseng Meyer) has been used as a herbal medicine and displays beneficial biological properties. Methods: We investigated the protective effects of Korean ginseng extracts (KGEs) against heat stress in a rat model. Following acclimatization for 1 week, rats were housed at room temperature for 2 weeks and then exposed to heat stress ($40^{\circ}C$/2 h/day) for 4 weeks. Rats were treated with three KGEs from the beginning of the second week to the end of the experiment. Results: Heat stress dramatically increased secretion of inflammatory factors, and this was significantly reduced in the KGE-treated groups. Levels of inflammatory factors such as heat shock protein 70, interleukin 6, inducible nitric oxide synthase, and tumor necrosis factor-alpha were increased in the spleen and muscle upon heat stress. KGEs inhibited these increases by down-regulating heat shock protein 70 and the associated nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase signaling pathways. Consequently, KGEs suppressed activation of T-cells and B-cells. Conclusion: KGEs suppress the immune response upon heat stress and decrease the production of inflammatory cytokines in muscle and spleen. We suggest that KGEs protect against heat stress by inhibiting inflammation and maintaining immune homeostasis.

Protective effect and mechanism of ginsenoside Rg2 on atherosclerosis

  • Qianqian Xue;Tao Yu;Zhibin Wang;Xiuxiu Fu;Xiaoxin Li;Lu Zou;Min Li;Jae Youl Cho;Yanyan Yang
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.237-245
    • /
    • 2023
  • Background: Ginsenoside Rg2 (Rg2) has a variety of pharmacological activities and provides benefits during inflammation, cancer, and other diseases. However, there are no reports about the relationship between Rg2 and atherosclerosis. Methods: We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to detect the cell viability of Rg2 in vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs). The expression of inflammatory factors in HUVECs and the expression of phenotypic transformation-related marker in VSMCs were detected at mRNA levels. Western blot method was used to detect the expression of inflammation pathways and the expression of phenotypic transformation at the protein levels. The rat carotid balloon injury model was performed to explore the effect of Rg2 on inflammation and phenotypic transformation in vivo. Results: Rg2 decreased the expression of inflammatory factors induced by lipopolysaccharide in HUVECs-without affecting cell viability. These events depend on the blocking regulation of NF-κB and p-ERK signaling pathway. In VSMCs, Rg2 can inhibit the proliferation, migration, and phenotypic transformation of VSMCs induced by platelet derived growth factor-BB (PDGF-BB)-which may contribute to its anti-atherosclerotic role. In rats with carotid balloon injury, Rg2 can reduce intimal proliferation after injury, regulate the inflammatory pathway to reduce inflammatory response, and also suppress the phenotypic transformation of VSMCs. Conclusion: These results suggest that Rg2 can exert its anti-atherosclerotic effect at the cellular level and animal level, which provides a more sufficient basis for ginseng as a functional dietary regulator.

The necessity of eliminating the interference of panaxatriol saponins to maximize the preventive effect of panaxadiol saponins against Parkinson's disease in rats

  • Yanwei Wang;Yufen Zhang;Yueyue Li;Zhizhen Zhang;Xiao-Yuan Lian
    • Journal of Ginseng Research
    • /
    • 제48권5호
    • /
    • pp.464-473
    • /
    • 2024
  • Background: The effects of individual panaxadiol saponin and panaxatriol saponin on rodent models of Parkinson's disease (PD) have been recognized. However, it is not clear whether purified total ginsenosides as an entirety has effect against PD in rat model. This study compared the protective effects of a purified panaxadiol saponin fraction (PDSF), a purified panaxatriol saponin fraction (PTSF), and their mixtures against the rotenone (ROT)-induced PD in rats. Methods: Potential effects of PDSF, PTSF, and their mixtures against motor dysfunction and impairments of nigrostriatal dopaminergic neurons (DN), blood-brain barrier (BBB), cerebrovascular endothelial cells (CEC), and glial cells were measured in the models of ROT-induced PD rats and cell damage. Pro-inflammatory NF-kB p65 (p65) activation was localized in DN and other cells in the striatum. Results: PDSF and PTSF had a dose-dependent effect against motor dysfunction with a larger effective dose range for PDSF. PDSF protected CEC, glial cells, and DN in models of PD rats and cell damage, while PTSF had no such protections. Chronic ROT exposure potently activated p65 in CEC with enhanced pro-inflammatory and decreased anti-inflammatory factors and impaired BBB in the striatum, PDSF almost completely blocked the ROT-induced p65 activation and maintained both anti- and pro-inflammatory factors at normal levels and BBB integrity, but PTSF aggravated the p65 activation with impaired BBB. Furthermore, PTSF nullified all the effects of PDSF when they were co-administrated. Conclusion: PDSF had significant protective effect against the ROT-induced PD in rats by protecting CEC, glial cells, and DN, likely through inhibiting NF-κB p65 in CEC from triggering neuroinflammation, and also directly protecting glial cells and neurons against ROT-induced toxicity. PDSF has great potential for preventing and treating PD.

Murine Macrophage RAW 264.7 세포에서 누은분홍잎(Acrosorium yendoi Yamada)의 추출물과 에틸아세테이트 분획물에 대한 항염증 효과 (Anti-inflammatory Effects on 80% Ethanol Extract and Ethyl Acetate Fraction of Acrosorium yendoi Yamada in Murine Macrophage RAW 264.7 Cells)

  • 고창식;현우철;김지현;고영종;송상목;고미희;이종철;김창숙;윤원종
    • 한국자원식물학회지
    • /
    • 제28권5호
    • /
    • pp.574-581
    • /
    • 2015
  • 본 연구는 누은분홍잎(Acrosorium yendoi Yamada) 80% 에탄올를 가지고 추출한 후 추출물을 극성에 따라 순차적으로 용매분획을 실시하여, 80% 에탄올 추출물 및 그 분획물들의 염증반응의 주체가 되는 대식세포 계열인 RAW 264.7 세포에서 LPS로 유도된 NO의 생성억제 효과, 그리고 iNOS와 COX-2의 단백질 발현 억제효과, PGE2 생성 억제 효과 및 TNF-α와 IL-6등과 같은 pro-inflammatory cytokines 생성 억제효과 등을 알아보았다. 대식세포 계열인 RAW 264.7 세포에 LPS로 자극을 주고 누은분홍잎 80% 에탄올 추출물 및 분획물을 처리하여 확인해본 결과, 에틸아세테이트 분획물에서 NO와 PGE2 생성 억제 활성이 가장강하게 나타났으며, 농도 의존적으로 NO 및 PGE2 생성억제 활성을 보임을 확인할 수 있었고, 세포독성평가(LDH)에서는 누은분홍잎 80% 에탄올 추출물 및 분획물에 50㎍/㎖ 이하의 농도에서는 세포독성이 나타나지 않았다. 또한, 누은분홍잎의 80% 에탄올 추출물, 헥산 및 에틸아세테이트 분획물에서 iNOS 및 COX-2 발현 억제 활성을 보이고 있음을 확인할 수 있었으며, 에틸아세테이트 분획물의 경우는 뚜렷하게 농도 의존적으로 iNOS 및 COX-2 발현 억제 활성을 보임을 알 수 있었다. 이상의 결과는 누은분홍잎에 대한 효능, 이화학적 성분 및 유효성분등에 대한 연구가 전무하여 본 결과를 통해 누은분홍잎 추출물 및 활성 분회물을 이용한 항염증 효능을 갖는 유효성분 분리 및 이를 통한 작용기전 연구에 중요한 기초자료가 될 것이라 사료되고, 또한 안전하고 효과적인 항염증 관련 의약품, 의약외품 및 기능성 식품소재 개발에 대한 가능성을 제시하였다.