• 제목/요약/키워드: Inflammatory factors

검색결과 916건 처리시간 0.034초

사람 치은섬유모세포에서 잎꼬시래기 에탄올 추출물의 항염증 및 항산화 효과 (Anti-Inflammatory and Antioxidative Effects of Gracilaria textorii Ethanol Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제7권4호
    • /
    • pp.61-69
    • /
    • 2019
  • Purpose : Human gingival fibroblast cell is one of the the main cell types in periodontal tissue, which they can show anti-inflammatory activity through the production of numerous lines of inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukins. Porphyromonas gingivalis, one of the oral pathogens, has reported to play a critical role in the development of periodontal diseases. This study aimed to investigate anti-inflammatory and antioxidative activities of Gracilaria textorii ethanol extract (GTEE) in P. gingivalis derived lipopolysaccharide (LPS-PG) stimulated human gingival fibroblast (HGF)-1 cell line. Methods : In order to analyze anti-inflammatory and antioxidative activities of GTEE in HGF-1 cell line, NOS enzyme activity, expression levels of iNOS, COX-2, NAD(P)H quinone dehydrogenase (NQO)1 and their transcription factors were estimated by Griess reaction and western hybridization. Results : LPS-PG induced overexpression of iNOS and COX-2, which was significantly attenuated by GTEE treatment in a dose-dependent manner without any cytotoxicity. In addition, intracellular NOS activity was in accordance with the result of iNOS expression. Due to important role in the regulation of inflammatory responses, phosphorylated status of p65 and c-jun, each subunit of nuclear factor (NF)-κB and activator protein (AP)-1, was also dose-dependently ameliorated by GTEE treatment. One of phase II enzymes, NQO1, and its transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), were analyzed since elevated phase II enzyme expression inhibited inflammatory response, which was significantly elevated by GTEE treatment in HGF-1 cell line. Conclusion : In conclusion, GTEE mitigated LPS-PG-stimulated inflammatory responses by attenuating NF-κB and AP-1 activation as well as accelerating NQO1 and Nrf2 expression in HGF-1 cell line. These results indicate that GTEE might be utilized a promising strategy for potential anti-inflammatory agent in periodontal diseases.

The Acetylation-based synthesis of 3,3',4',5,5',7-hexaacetate myricetin and evaluation of its anti-inflammatory activities in lipopolysaccharide-induced RAW264.7 mouse macrophage cells

  • Kristina Lama;Hyehyun Hong;Tae-Jin Park;Jin-Soo Park;Won-Jae Chi;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.29-38
    • /
    • 2023
  • Recent studies have highlighted the link between diseases and inflammation across our lifespan. Our sedentary lifestyle, high-calorie diet, chronic stress, chronic infections, and exposure to pollutants and xenobiotics, collectively intensify the course and recurrence of infections and inflammation in our bodies, promoting the prevalence of chronic diseases and aging. Given such phenomena and considering additional factors such as the frequency of prescription, and easy access to over-the-counter drugs, the need for anti-inflammatory therapeutics is ever-increasing. However, the readily available anti-inflammatory treatment option comes with a greater risk of side effects or high cost (biologics). Therefore in this growing competition of discovering and developing new potent anti-inflammatory drugs, we focused on utilizing the established knowledge of traditional medicine to find lead compounds. Since lead optimization is an indispensable step toward drug development, we applied this concept for the production of potent anti-inflammatory compounds achieved by structural modification of flavonoids. The derivative obtained through acetylation of myricetin, 3,3',4',5,5',7-hexaacetate myricetin, showed a greater inhibitory effect in the production of pro-inflammatory mediators such as nitric oxide, Prostaglandin E2, and pro-inflammatory cytokines like interleukin-6, interleukin1β, in lipopolysaccharide-stimulated RAW264.7 mouse macrophage cells compared to myricetin. The increased potency of inhibition was in conjunction with an increased inhibitory effect on inducible nitric oxide synthase and cyclooxygenase-2 proteins. Through such measures, this study supports lead optimization for well-established lead compounds from traditional medicine using a simpler and greener chemistry approach for the purpose of designing and developing potent anti-inflammatory therapeutics with possibly fewer side effects and increased bioavailability.

복합 해양치유 프로그램이 근골격계 및 대사성 질환자의 대사증후군 위험인자 및 CRP에 미치는 영향 (Effects of Combined Marine Treatment Program on Risk Factors of Metabolic Syndrome, and CRP in Elderly Musculoskeletal and Metabolic Patients)

  • 김현준;신재숙
    • 대한통합의학회지
    • /
    • 제8권1호
    • /
    • pp.37-45
    • /
    • 2020
  • Purpose : The purpose of this study is to verify the effectiveness of combined marine healing programs by analyzing the physical composition of elderly musculoskeletal and metabolic patients, the risk factors of metabolic syndrome and the effects of the inflammatory factors, the C -reactive protein (CRP). Methods : Individuals with musculoskeletal and metabolic diseases were identified, and marine healing programs were conducted for f our hours each day for two weeks with 11 elderly participants. A one-way RM ANOVA was conducted to determine the differences due to treatment with composite marine healing systems. The results are as follows. Results : After a two-week ocean healing program, weight decreased the most, while BMI also decreased and muscle mass increased. Waist circumference, a risk factor for metabolic syndrome and CRP, decreased, and CRP demonstrated a decreasing trend. Conclusion : The above results show that the two-week marine healing program has a positive effect on the body composition and inflammatory factors of elderly musculoskeletal and metabolic patients.

좁은잎천선과나무(Ficus erecta var. sieboldii) 잎 추출물이 대식세포 RAW 264.7 세포에서 미치는 항산화 및 항염증 효과 (Antioxidant and Anti-inflammatory Effects of Ficus erecta var. sieboldii Leaf Extract in Murine Macrophage RAW 264.7 Cells)

  • 정용환;함영민;윤선아;오대주;김창숙;윤원종
    • 한국자원식물학회지
    • /
    • 제31권4호
    • /
    • pp.303-311
    • /
    • 2018
  • 본 연구는 좁은잎천선과나무 잎 추출물을 식의약품 소재 등 천연물 소재로 활용하기 위하여 항산화 및 항염증 활성에 대한 예비 평가를 기술하였다. 좁은잎천선과나무는 70% 에탄올을 사용하여 추출한 다음 헥산, 디클로로메탄, 에틸아세테이트 및 부탄올을 사용하여 순차적으로 분획하였다. 항산화 및 항염증제 효과를 효과적으로 스크리닝하기 위해 좁은잎천선과나무 잎 추출물이 산화 스트레스(DPPH, xanthine oxidase and superoxide) 생성에 미치는 억제 효과를 확인하였다. 또한, LPS로 활성화된 대식세포 RAW 264.7 세포에서 염증성 인자(NO, iNOS, COX-2, $PGE_2$, IL-6 and $IL-1{\beta}$)의 생성에 대한 좁은잎천선과나무 잎 추출물의 억제 효과를 확인하였다. 좁은잎천선과 나무 잎 추출물의 용매분획물 중 디클로로메탄과 에틸아세테이트 분획물은 산화 스트레스(DPPH, xanthine oxidase and superoxide)의 생성 감소가 있었고, 좁은잎천선과나무 잎 추출물의 헥산과 디클로로메탄 분획물은 염증 유발인자(NO, iNOS, COX-2, $PGE_2$, IL-6, and $IL-1{\beta}$)의 생성을 억제하였다. 또한, 디클로로메탄 분획물은 염증성 사이토카인($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$)의 생성을 억제하였다. 이러한 결과는 좁은잎천선과나무 잎 추출물이 산화 스트레스 및 염증 유발 인자에 유의한 영향을 미치고 있어 산화방지제 및 항염증제와 같은 천연물 소재로 활용될 수 있을 것으로 사료된다.

중년여성의 운동 형태에 따른 염증인자와 혈관내피 성장인자에 미치는 영향 (The Effects of Type of Exercise on Inflammatory Factor and Vascular Endothelial Growth Factor in Middle Aged Women)

  • 어경태;조인혜;곽동민
    • 산업융합연구
    • /
    • 제21권3호
    • /
    • pp.171-179
    • /
    • 2023
  • 본 연구는 중년여성 18명을 대상으로 저항성 운동군 A그룹 6명(1RM 40-60%), 유산소 운동군 B그룹 6명(VO2max 60-70%), 유연성 운동군 C그룹(10~60 sec/sets) 6명으로 무선 배정하여 12주간 주 3회(월, 수, 금) 1일 50~60분의 운동 형태에 따른 신체구성과 염증인자, 혈관내피 성장인자에 미치는 영향을 알아보기 위하여 비교·분석한 결과, 첫째, 염증인자의 변화에서는 CRP 및 IL-6의 시기의 주효과에서는 유의한 차이(p<.05)가 나타났다. 둘째, 혈관내피 성장인자의 변화에서는 VEGF의 시기의 주효과 및 시기×그룹의 상호작용에서는 유의한 차이(p<.05)가 나타났다. 본 연구의 결과를 토대로 운동 형태에 따른 염증인자와 혈관내피 성장인자에 관한 다양한 각도의 연구와 개선을 위한 기초 자료로 활용되기를 기대한다.

In-hospital malnutrition among adult patients in a national referral hospital in Indonesia

  • Dyah Purnamasari;Nur Chandra Bunawan;Dwi Suseno;Ikhwan Rinaldi;Drupadi HS Dillon
    • Nutrition Research and Practice
    • /
    • 제17권2호
    • /
    • pp.218-227
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Malnutrition during hospitalization is linked to increased morbidity and mortality, but there are insufficient studies observing clinical factors contributing to weight loss during hospitalization in Indonesia. This study was therefore undertaken to determine the rate of weight loss during hospitalization and the contributing factors. SUBJECTS/METHODS: This was a prospective study involving hospitalized adult patients aged 18-59 yrs, conducted between July and September 2019. Body weight measurement was taken at the time of admission and on the last day of hospitalization. The factors studied were malnutrition at admission (body mass index < 18.5 kg/m2), immobilization, depression (Beck Depression Inventory-II Indonesia), polypharmacy, inflammatory status (neutrophil-lymphocytes ratio; NLR), comorbidity status (Charlson Comorbidity Index; CCI), and length of stay. RESULTS: Totally, 55 patients were included in the final analysis, with a median age of 39 (18-59 yrs) yrs. Of these, 27% had malnutrition at admission, 31% had a CCI score > 2, and 26% had an NLR value of ≥ 9. In all, 62% presented with gastrointestinal symptoms, and depression was documented in one-third of the subjects at admission. Overall, we recorded a mean weight loss of 0.41 kg (P = 0.038) during hospitalization, with significant weight loss observed among patients hospitalized for 7 days or more (P = 0.009). The bivariate analysis revealed that inflammatory status (P = 0.016) was associated with in-hospital weight loss, while the multivariate analysis determined that the contributing factors were length of stay (P < 0.001) and depression (P = 0.019). CONCLUSIONS: We found that inflammatory status of the patient might influence the incidence of weight loss during hospitalization, while depression and length of stay were independent predictors of weight loss during hospitalization.

치은증식시 세포구성과 성장인자에 관한 면역조직화학적 연구 (IMMUNOHISTOCHEMICAL STUDIES ON CELL POPULATION AND GROWTH FACTORS IN GINGIVAL HYPERPLASIA)

  • 이강남;한수부;이재일
    • Journal of Periodontal and Implant Science
    • /
    • 제24권2호
    • /
    • pp.357-375
    • /
    • 1994
  • The purpose of this study was to investigate the differences of histochemical characteristics in inflammatory fibrous gingival hyperplasia (FGH), phenytoin-induced gingival hyperplasia(PIGH), idiopathic gingival hyperplasia(IDGH) and control groups (healthy and inflammatory gingiva) by immunohistochemical method with various antibodies and histomorphological analysis. In immunohistochemical finding, antibodies to inflammatory cells (T/B lymphocytes, macrophages, other monocytes), proliferating cell nuclear antigen(PCNA), epidermal growth factor(EGF), factor VIII, and type I collagen were used. 1. The inflammatory infiltrates in FGH were less than those in inflammatory gingiva. The composition of inflammatory cells of PIGH was similar with that of FGH. IDGH showed a similar histologic findings with healthy gingival tissue. 2. In FGH, the number of fibroblasts and newly-formed collagen fibers was increased. No significant increase of fibroblasts and the dense accumulation of thick collagen fibers were seen in PIGH. The increase of fibroblasts and the dense accumulation of thick collagen were seen in IDGH. 3. PCNA-positive cells were localized mainly in the area accumulated with inflammatory cells and blood vessels, significantly increased in all hyperplastic tissue groups, and distributed evenly in IDGH. 4. The distribution of EGF were not observed in healthy gingiva but detected locally in area with confluent blood vessels,without significant difference between the other tissue groups. This results suggest that inflammation plays a significant role in inducing hyperplastic change of gingival tissue. While in DIGH, drug itself as well as inflammation seems to attribute to hyperplastic change.

  • PDF

The Root from Heracleum moellendorffii Exerts Anti-Inflammatory Activity via the Inhibition of NF-κB and MAPK Signaling Activation in LPS-Stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Park, Gwang Hun;Son, Ho-Jun;Eo, Hyun Ji;Song, Jeong Ho;Jeong, Hyung Jin;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.96-96
    • /
    • 2018
  • Although the roots of Heracleum moellendorffii (HM-R) have been long treated for inflammatory human diseases, scientific evidence for the anti-inflammatory activity of HM-R is not sufficient. In this study, we investigated anti-inflammatory activity and mechanism of action of HM-R in LPS-stimulated RAW264.7 cells. HM-R blocked LPS-induced NO and PGE2 production, but not HM-L. HM-R inhibited LPS-induced overexpression of iNOS, COX-2, $IL-1{\beta}$ and IL-6 in RAW264.7 cells. HM-R inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. In addition, HM-R inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, HM-R inhibited attenuated LPS-mediated overexpression of the osteoclast-specific factors such as NFATc1, cathepsin K, MCP-1 and TRAP. These results indicate that HM-R may exert anti-inflammatory activity by inhibiting $NF-{\kappa}B$ and MAPK signaling activation. From these findings, HM-R has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammation and inflammatory diseases.

  • PDF

Anti-Inflammatory Potential of Probiotic Strain Weissella cibaria JW15 Isolated from Kimchi through Regulation of NF-κB and MAPKs Pathways in LPS-Induced RAW 264.7 Cells

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Choi, Ae-Jin;Choe, Jeong-Sook;Bae, Chun Ho;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1022-1032
    • /
    • 2019
  • Probiotics are known to provide the host with immune-modulatory effects and are therefore of remarkable interest for therapeutic and prophylactic applications against various disorders, including inflammatory diseases. Weissella cibaria JW15 (JW15) has been reported to possess probiotic and antioxidant properties. However, the effect of JW15 on inflammatory responses has not yet been reported. Therefore, the objective of the current study was to evaluate the anti-inflammatory potential of JW15 against lipopolysaccharide (LPS) stimulation. The production of pro-inflammatory factors and the cellular signaling pathways following treatment with heat-killed JW15 was examined in LPS-induced RAW 264.7 cells. Treatment with heat-killed JW15 decreased nitric oxide and prostaglandin $E_2$ production via down-regulation of the inducible nitric oxide synthase and cyclooxygenase-2. In addition, treatment with heat-killed JW15 suppressed the expression of pro-inflammatory cytokines, interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor-${\alpha}$. The anti-inflammatory properties of treating with heat-killed JW15 were associated with mitogen-activated protein kinase signaling pathway-mediated suppression of nuclear factor-${\kappa}B$. These results indicated that JW15 possesses anti-inflammatory potential and provide a molecular basis regarding the development of functional probiotic products.

Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages

  • Kim, Ga-Young;Jeong, Hana;Yoon, Hye-Young;Yoo, Hye-Min;Lee, Jae Young;Park, Seok Hee;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.640-645
    • /
    • 2020
  • Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS signal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.