• Title/Summary/Keyword: Infinite Barrier

Search Result 21, Processing Time 0.025 seconds

Experimental Study on Sound Diffraction over Barrier Using a Spark Discharge Sound Source (스파크 음원을 이용한 장벽의 회절음장에 관한 실험 연구)

  • 주진수
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.466-471
    • /
    • 1999
  • The prediction methods of diffraction field in barrier has beenreported much about the infinite length barrier and it is very few work that reasonable sound source was used in experiment. This study, however, has worked about the several model barrier with acoustic scale model experiment. In the case of scale model experiment, it is difficult to use the kind of source with sufficiently characteristics. A spark discharge sound source with the high repeatability, broad band spectra, small size and omnidirectivity has veen used for the prediction of diffraction field. Several model barriers with different length on the ground were considered for the experiment and compared with the the results calculated by the approximation.

  • PDF

A Study of Barrier Insertion Loss Near a High Rise Building (고층 건물에 인접한 방음벽의 삽입손실에 관한 연구)

  • 진병주;김현실;김상렬
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • In this paper performance of the noise barrier which is 53 m long and 6m high, and is located between the high rise apartment and road, is studied by using experimental and analytic method. The insertion loss is measured by using the direct method in accordance with the ISO code, while theoretical prediction is based on Muradali and Fyfe's method (Applied Acoustics, Vol. 53, 49~75, 1998). In addition to the diffraction at the top of the barrier, the waves are reflected infinite times between the building and the barrier, which is equivalent to replacing the building by the infinite series of the image receiver points. In two-dimensional study, the prediction of the insertion loss results in significantly overestimated values compared with the measurement. However three-dimensional analysis shows reasonable agreements, where traffic noise is assumed as incoherent line source and the length of the source is larger than that of the barrier.

  • PDF

Reduction of train-induced vibrations on adjacent buildings

  • Hung, Hsiao-Hui;Kuo, Jenny;Yang, Yeong-Bin
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.503-518
    • /
    • 2001
  • In this paper, the procedure for deriving an infinite element that is compatible with the quadrilateral Q8 element is first summarized. Enhanced by a self mesh-expansion procedure for generating the impedance matrices of different frequencies for the region extending to infinity, the infinite element is used to simulate the far field of the soil-structure system. The structure considered here is of the box type and the soils are either homogeneous or resting on a bedrock. Using the finite/infinite element approach, a parametric study is conducted to investigate the effect of open and in-filled trenches in reducing the structural vibration caused by a train passing nearby, which is simulated as a harmonic line load. The key parameters that dominate the performance of wave barriers in reducing the structural vibrations are identified. The results presented herein serve as a useful guideline for the design of open and in-filled trenches concerning wave reduction.

A Study on the Sound Resonating Barrier (음향공명 방음벽 연구)

  • 이준신;김태룡;손석만;박동수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.659-664
    • /
    • 2001
  • Noise barriers are widely used to reduce the sound level propagating from highways, railways or factories to residential areas. The reduced noise level at a receiver point is then determined by the diffracted waves around the edge of the barrier as well as by the transmitted waves through the barrier. For proper usage, many studies either theoretical or experimental have been made with the objective of precisely predicting the acoustic field and improving the noise attenuating properties of barriers. In this study, a simple scattering model, a line acoustic source scattered by an infinite cylinder, is introduced to simply investigate the sound attenuation efficiency of a sound-resonating barrier. From this model study, it is observed that the sound-resonating barrier can be used as a good sound-shielding element especially for the pure-tone noise generated from the transformer. Large sound-attenuation is achieved by applying the sound-resonating barrier to the large transformers in a substation.

  • PDF

A Study on the Sound Resonating Barrier (음향공명 방음벽 연구)

  • Lee, Jun-Shin;Kim, Tae-Ryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.413-419
    • /
    • 2002
  • Noise barriers are widely used to reduce the sound level propagating from highways, railways or factories to residential areas. The reduced noise level at a receiver point is then determined by the diffracted waves around the edge of the barrier as well as by the transmitted waves through the barrier. 1'or proper usage, many studies either theoretical or experimental have been made with the objective of precisely Predicting the acoustic field and improving the noise attenuating properties of barriers. In this study. a simple scattering model. a line acoustic source scattered by an infinite cylinder, is introduced to simply Investigate the sound attenuation efficiency of a sound-resonating barrier. From this model study, it is observed that the sound-resonating harrier can be used as a good sound-shielding element especially for the pure-tone noise generated from the transformer. Large sound-attenuation is achieved by applying the sound-resonating barrier to the large transformers in a substation.

Study on the Position of Error Sensors in an Active Soft Edge Noise Barrier (제어 음원이 방음벽 모서리에 설치되는 능동방음벽의 오차센서 위치에 관한 연구)

  • Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1216-1222
    • /
    • 2010
  • Based on the MacDonald's analytic model for the diffracted sound field of a semi-infinite noise barrier, computer simulations were performed for various positions of error microphones for an active noise barrier system. The simulation process also included the effects of floor reflections on both sides of the barrier. The results were also compared with Niu's simulation results and showed a straight line arrangement of sensors and actuators, in the order of primary source, secondary source and error microphone is better than over the top arrangement of the error microphones.

A Study on the Effects of Absorptive Treatments for the Highway Noise Barriers (도로교통소음의 방음벽 흡음효과에 관한 연구)

  • 김재석;루이스칸;김갑수
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • To mitigate excessive noise from highways, and high speed rail road, it is often necessary to construct a noise barrier. Absorptive barroer attenuation solution is obtained for the problem of diffration of a plane wave sound source by a semi-infinite plane. A finite region in the vicinity of the edge has an highly absorbing boundary condition ; the remaining portion of the half plane is rigid. The problem which is solved is a mathematical model for a hard barrier with an absorbing edge. If the wavelength of the sound is much smaller than the length scale associated with the barrier, the diffraction process is governed to all intents and purpose by the solution to a standard problem of diffraction by a semi-infinite hard plane with an absorbent edge. It is concluded that the absorbing material that comprises the edge need only be of the order of a wavelength long to have approximately the same effect, on the sound attenuation in the shadow side of the barrier. Traffic noise is composed of thousands of sources with varying frequency content. To simplify noise predictions when barriers are present, an effective frequency of 550Hz may be used to represent all vehicles. The wavelength of sound at f=550Hz for traffic noise is about 2 feet. According to the above conclusion, an absorptive highway noise barrier is only needed to cover to cover approximately a 2 foot length of absorbing material. It would be more economical to cover only the region in the immediate vicinity of the edge with highly sound obsorbent material.

  • PDF

Dependence of Optical Matrix Elements on the Boundary Conditions of the Continuum States in Quantum Wells

  • Jang Y. R.;Yoo K. H.;Ram-Mohan L. R.
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.39-44
    • /
    • 2005
  • Unlike for the bound states, several different boundary conditions are used for the continuum states above the barrier in semiconductor quantum wells. We employed three boundary conditions, infinite potential barrier boundary condition, periodic boundary condition and scattering boundary condition, and calculated the local number of states, wavefunctions and optical matrix elements for the symmetric and asymmetric quantum wells. We discussed how these quantities are related in the three boundary conditions. We argue that the scattering boundary condition has several advantages over the other two cases. These results would be useful in understanding quantum well lasers and detectors involving continuum states.

Wave Responses of Buoyant Flap-typed Storm Surge Barriers - Numerical Simulation (부유 플랩형 고조방파제의 파랑응답 - 수치모의)

  • Jeong, Shin-Taek;Ko, Dong-Hui;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.196-208
    • /
    • 2009
  • In this paper, wave responses of buoyant flap-typed storm surge barriers was studied numerically. Wave motions were modeled by using a linear potential wave theory, and behaviors of structures were represented as a Newton's 2nd law of motion. The near field region of the fluid was discretized as conventional quadratic iso-parametric elements, while the far field was modeled as infinite elements. Comparisons with the results from hydraulic model tests show that the present model gives good results. By using the model, the applicability of a buoyant flap-typed storm surge barrier in Masan bay was investigated considering field environmental conditions.

An Analytical Model of the First Eigen Energy Level for MOSFETs Having Ultrathin Gate Oxides

  • Yadav, B. Pavan Kumar;Dutta, Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.203-212
    • /
    • 2010
  • In this paper, we present an analytical model for the first eigen energy level ($E_0$) of the carriers in the inversion layer in present generation MOSFETs, having ultrathin gate oxides and high substrate doping concentrations. Commonly used approaches to evaluate $E_0$ make either or both of the following two assumptions: one is that the barrier height at the oxide-semiconductor interface is infinite (with the consequence that the wave function at this interface is forced to zero), while the other is the triangular potential well approximation within the semiconductor (resulting in a constant electric field throughout the semiconductor, equal to the surface electric field). Obviously, both these assumptions are wrong, however, in order to correctly account for these two effects, one needs to solve Schrodinger and Poisson equations simultaneously, with the approach turning numerical and computationally intensive. In this work, we have derived a closed-form analytical expression for $E_0$, with due considerations for both the assumptions mentioned above. In order to account for the finite barrier height at the oxide-semiconductor interface, we have used the asymptotic approximations of the Airy function integrals to find the wave functions at the oxide and the semiconductor. Then, by applying the boundary condition at the oxide-semiconductor interface, we developed the model for $E_0$. With regard to the second assumption, we proposed the inclusion of a fitting parameter in the wellknown effective electric field model. The results matched very well with those obtained from Li's model. Another unique contribution of this work is to explicitly account for the finite oxide-semiconductor barrier height, which none of the reported works considered.