• 제목/요약/키워드: Infiltration volume

검색결과 191건 처리시간 0.02초

침투 트렌치로 인한 유출 양상의 실험 연구 (Experimental Study of Runoff Induced by Infiltration Trench)

  • 이상호;조희호;이정민;박재현
    • 한국물환경학회지
    • /
    • 제24권1호
    • /
    • pp.107-117
    • /
    • 2008
  • Infiltration facilities are effective instruments to mitigate flood and can increase base runoff in urban watersheds. In order to analyze effects of infiltration trenches physical model experiments were conducted. The physical model facility consists of two soil tanks, artificial rainfall generators, tensiometers, and piezometers. The experiment was conducted by nine times and each case differed in rainfall intensity, rainfall duration and the type of ground surface. Measured quantities in the experiments are as follows: surface runoff, subsurface runoff, trench pipe runoff, groundwater level, water content, etc. The following resulted from the model experiment: The volume of subsurface runoff at trench watershed was maximum 78.3% compared with rainfall. This value is bigger than that of ordinary rate of subsurface runoff, and shows a groundwater recharge effect of trench. The time of runoff passing through the trench became earlier and the volume of runoff became larger with the increase of inflow into the trench, while trench exfiltration into ground became relatively smaller. The results of this study presented above show that infiltration trenches are effective instruments to increase base runoff during dry periods.

불포화 토양에서 공기의 배출/제한이 침투속도에 미치는 영향 (Effects of Air Drain and Confined Conditions to Infiltration Rate in Unsaturated Soils)

  • 김상래;기재홍;김영진;한무영
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.681-687
    • /
    • 2008
  • It is well known that the water infiltration rate depends on soil properties such as soil water content, water head, capillary suction, density, hydraulic conductivity, and porosity. However, most of proposed infiltration models assume that the air phase is continuous and in equilibrium with the atmosphere or air compression and air entrapment on infiltration was not considered. This study presents experimental results on unsaturated water infiltration to relate air entrapment and hydraulic conductivity function based on soil air properties. The objectives of this study were to measure change of soil air pressure ahead of wetting front under air drain and air confined condition to find the confined air effect on infiltration rate, to reduce the entrapped air volume related with soil air pressure to increase the soil permeability, and to make a basis of infiltration process model for the purpose of improvement of infiltration rate in the homogeneous soil column. The results of the work show that soil air pressure increases according to increasement of the saturated soil depth rather than the wetting front depth during infiltration process.

Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures

  • Guerra, Heidi B.;Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.67-74
    • /
    • 2019
  • Apparent changes in the natural hydrologic cycle causing more frequent floods in urban areas and surface water quality impairment have led stormwater management solutions towards the use of green and sustainable practices that aims to replicate pre-urbanization hydrology. Among the widely documented applications are infiltration techniques that temporarily store rainfall runoff while promoting evapotranspiration, groundwater recharge through infiltration, and diffuse pollutant reduction. In this study, a laboratory-scale infiltration device was built to be able to observe and determine the factors affecting flow variations and corresponding solids removal through a series of experiments employing semi-synthetic stormwater runoff. Results reveal that runoff and solids reduction is greatly influenced by the infiltration capability of the underlying soil which is also affected by rainfall intensity and the available depth for water storage. For gravel-filled structures, a depth of at least 1 m and subsoil infiltration rates of not more than 200 mm/h are suggested for optimum volume reduction and pollutant removal. Moreover, it was found that the length of the structure is more critical than the depth for applications in low infiltration soils. These findings provide a contribution to existing guidelines and current understanding in design and applicability of infiltration systems.

연안해역에서 파도에 의한 해수 침투이론의 비교와 정량화 (Analysis and Quantification of Seawater Infiltration by Wave Action in Coastal Zone)

  • 정정조;최두형;김태근;강전광정
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제4권4호
    • /
    • pp.3-11
    • /
    • 2001
  • 조간대와 같은 연안지역에서 해수의 토양 이동이 가지는 의미는 육상으로부터 유입되는 오염물질의 토양 이동 및 생물농축, 저서생물들의 생존에 필수적인 플랑크톤, 박테리아, 유기쇄설물, 산소, 영양염, 유기물의 생물공급, 수질 정화량 산정의 중요한 단서가 된다는 점이다. 따라서, 본 연구에서는 폐쇄성 수역과 같이 파도에너지가 비교적 작은 조간대에서 파도에 의한 해수의 침투거동을 해석하고, 파도에너지와 사면 구배의 변화에 따른 해수의 침투량 변화를 파악하고, 그 결과를 바탕으로 실제 조간대에서의 해수 침투량을 개략적으로 산정하는 것을 목적으로 하여, 모의 조간대 실험장치를 이용하여 실험을 수행한 결과, 다음과 같은 결론을 얻을 수 있었다. 폐쇄성 수역과 같은 파도에너지가 작은 조간대에서는 파도에 의해서 해수가 반원형의 형태로 토양중으로 침투하는 semi-circular mechanism은 지금까지 알려지지 않았던 새로운 침투 거동임을 알 수 있었다. 구배 또는 쇄파파고가 높아짐에 따라서 해수의 침투량이 증가하는 것을 알 수 있었다. 또한, 해수는 쇄파파고 보다는 구배의 영향을 크게 받아서 토양중으로 침투한다는 사실을 알 수 있었다. 현장토양을 이용하여 해수의 침투량을 정량화 할 수 있었으며, 본 연구의 결과를 바탕으로 현장 조간대에서의 해수 침투량을 개략적으로 산정 할 수 있었다. 따라서, 본 연구 결과를 바탕으로 오염물질의 토양 이동 및 생물농축, 저서생물들의 먹이공급, 수질 정화량 산정에 관한 연구가 활발히 진행되기를 요망한다.

  • PDF

조립식 저류형 침투시설의 설계 및 공간적용 효과분석 (Design and Effectiveness Analysis of prefabricated Storage-type infiltration facility)

  • 이태구
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.103-108
    • /
    • 2016
  • Purpose: This study has developed economical and environmentally friendly storage type infiltration facilities that securing storage space inside the infiltration facility. It focused on preventing flooding rainfall as well as securing more groundwater through rainwater infiltration that is valuable for the dry season. In addition, this study compares the installation cost of the storage-type infiltration facility to the cost of the conventional rainwater management facilities to demonstrate the economic efficiency of the storage-based infiltration facility. Method: Unit infiltration of this facility is calculated and when it was applied to a certain capacity, the amount of countermeasures are proposed in case study. Result: Unit infiltration of it is $0.2541m^3/hr$ and un it Temporary storage of it is $1.054m^3/m$. As a result, the infiltration effect of this facility is $1.306m^3/hr$. The cost was approximately 30% reduction in time to apply the storage type infiltration facility as compared with the case to apply the existing penetration of the facilities. Since the penetration of the existing facilities is smaller than that and it has much securing volume to process the same the amount of countermeasures. Therefore, it is determined that the cost significantly increases in material cost part. On the other hand, storage type infiltration facility is installed a small quantity because Unit Temporary storage and infiltration are bigger than that. So, it occurred to reduce material and installation costs.

SiCf/SiC 복합체의 화학기상침착 거동에 미치는 권선 구조와 침착 변수의 영향 (Influence of Winding Patterns and Infiltration Parameters on Chemical Vapor Infiltration Behaviors of SiCf/SiC Composites)

  • 김대종;고명진;이현근;박지연;김원주
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.453-458
    • /
    • 2014
  • SiC and its composites have been considered for use as nuclear fuel cladding materials of pressurized light water reactors. In this study, a $SiC_f$/SiC composite as a constituent layer of SiC triplex fuel cladding was fabricated using a chemical vapor infiltration (CVI) process in which tubular SiC fiber preforms were prepared using a filament winding method. To enhance the matrix density of the composite layer, winding patterns, deposition temperature, and gas input ratio were controlled. Fiber arrangement and porosity were the main parameters influencing densification behaviors. Final density of the composites decreased as the SiC fiber volume fraction increased. The CVI process was optimized to densify the tubular preforms with high fiber volume fraction at a high $H_2$/MTS ratio of 20 at $1000^{\circ}C$; in this process, surface canning of the composites was effectively retarded.

A Comparative Study Between High and Low Infiltration Soils as Filter Media in Low Impact Development Structures

  • Guerra, Heidi B.;Geronimo, Franz Kevin;Reyes, Nash Jett;Jeon, Minsu;Choi, Hyeseon;Kim, Youngchul;Kim, Lee-Hyung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.130-130
    • /
    • 2021
  • The increasing effect of urbanization has been more apparent through flooding and downstream water quality especially from heavy rainfalls. In response, stormwater runoff management solutions have focused on runoff volume reduction and treatment through infiltration. However, there are areas with low infiltration soils or are experiencing more dry days and even drought. In this study, a lab-scale infiltration system was used to compare the applicability of two types of soil as base layer in gravel-filled infiltration systems with emphasis on runoff capture and suspended solids removal. The two types of soils used were sandy soil representing a high infiltration system and clayey soil representing a low infiltration system. Findings showed that infiltration rates increased with the water depth above the gravel-soil interface indicating that the available depth for water storage affects this parameter. Runoff capture in the high infiltration system is more affected by rainfall depth and inflow rates as compared to that in the low infiltration system. Based on runoff capture and pollutant removal analysis, a media depth of at least 0.4 m for high infiltration systems and 1 m for low infiltration systems is required to capture and treat a 10-mm rainfall in Korea. A maximum infiltration rate of 200 mm/h was also found to be ideal to provide enough retention time for pollutant removal. Moreover, it was revealed that low infiltration systems are more susceptible to horizontal flows and that the length of the structure may be more critical that the depth in this condition.

  • PDF

토지이용 변화가 물순환에 미치는 영향과 침투트렌치 설치 효과 분석 - A 신도시 지구를 중심으로 - (Impacts on water-cycle by land use change and effects of infiltration trenches in Asan New town)

  • 현경학;이정민
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.691-701
    • /
    • 2010
  • As the water-cycle is transformed by increasing of the impermeable area in process of urbanization, decentralized rainwater management facilities(infiltration, harvesting and retention facilities) as source control are considered to be a method of restoring water-cycle of urban and reducing runoff. SWMM model was used to analyse the change of water-cycle structure before and after development in A new town watershed. Modified SWMM code was developed to apply infiltration facilities. The modified SWMM was used to analyse the change of water-cycle before and after infiltration trench setup in AJ subcatchment. Changes of the impervious area by development and consequent increase in runoff were analyzed. These analyses were performed by a day rainfall during ten years from 1998 to 2007. According to the results, surface runoff increased from 51.85% to 65.25 %, and total infiltration volume decreased from 34.15 % to 21.08 % in A newtown watershed. If more than 80 infiltration trenches are constructed in AJ subcatchment, the low flow and the drought flow increases by around 47%, 44%, separately. The results of this study, infiltration trench is interpreted to be an effective infiltration facility to restore water-cycle in new town.

도시에서 하이브리드 LID 침투관 설치에 따른 침투량 향상 (Improvement of Infiltration by Applying Hybrid Low Impact Development (LID) Infiltration Pipes in an Urban Area)

  • 한경수;박용순
    • Ecology and Resilient Infrastructure
    • /
    • 제3권2호
    • /
    • pp.126-129
    • /
    • 2016
  • 도시화로 인해 불투수 면적이 증가하면서 지하 침투량이 감소하고 강우 유출량이 증가하여 도시 침수 발생 가능성이 커지고 지하수 고갈 문제를 발생시키고 있다. 본 연구에서는 가로수 주위에 수분 및 영양을 공급할 수 있는 신개념 특수 가로수 보호판의 설치가 도시 내 침투량 개선에 미치는 효과를 평가하고, 시설의 배치에 따른 침투량 변화를 조사하였다. 침투관이 설치된 신개념 가로수 보호판은 토양으로는 빗물 침투량을 증가시키고 지면 위 수위 상승을 억제하였다. 따라서 개발된 신개념 가로수 보호판은 도시 도로변에서 저영향개발 (LID) 시설로서 효과적으로 적용될 수 있을 것으로 판단되었다.

용탕단조법에 의한 금속복합재료의 성형공정에 있어서 함침한계성에 관한 연구 (A Study on Infiltration Limits in Forming Process of Metal Matrix Composites by Squeeze Casting)

  • 강충길;구광서
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1751-1760
    • /
    • 1993
  • The squeeze casting process is considered as an attractive way to form the primary product of near net shape metal matrix composites for wide use in automobile industry. To understand for infiltration limit in squeeze casting processes, the SAFFIL short fiber preform of volume fraction $10%{\sim}23%$ were fabricated by vaccum pumping and speed control press, and the optimal condition for fiber preform fabrication had been experimentally obtained. The composite materials were fabricated by forced infiltration of molten metals such as Al6061, Al7075, pure Al, AC8A, and Al2024. The infiltration distance and deformation of fiber preform are observed, and tensile strength were measured from at the room temperature.