• Title/Summary/Keyword: Infilled concrete

Search Result 155, Processing Time 0.02 seconds

Parameters affecting the fundamental period of infilled RC frame structures

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Tsaris, Athanasios K.;Di Trapani, Fabio;Cavaleri, Liborio
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.999-1028
    • /
    • 2015
  • Despite the fact that the fundamental period appears to be one of the most critical parameters for the seismic design of structures according to the modal superposition method, the so far available in the literature proposals for its estimation are often conflicting with each other making their use uncertain. Furthermore, the majority of these proposals do not take into account the presence of infills walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period numerical value. Toward this end, this paper presents a detailed and indepth analytical investigation on the parameters that affect the fundamental period of reinforce concrete structure. The calculated values of the fundamental period are compared against those obtained from the seismic code and equations proposed by various researchers in the literature. From the analysis of the results it has been found that the number of storeys, the span length, the stiffness of the infill wall panels, the location of the soft storeys and the soil type are crucial parameters that influence the fundamental period of RC buildings.

Effect of masonry infill walls with openings on nonlinear response of reinforced concrete frames

  • Ozturkoglu, Onur;Ucar, Taner;Yesilce, Yusuf
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.333-347
    • /
    • 2017
  • Masonry infill walls are unavoidable parts of any building to create a separation between internal space and external environment. In general, there are some prevalent openings in the infill wall due to functional needs, architectural considerations or aesthetic concerns. In current design practice, the strength and stiffness contribution of infill walls is not considered. However, the presence of infill walls may decisively influence the seismic response of structures subjected to earthquake loads and cause a different behavior from that predicted for a bare frame. Furthermore, partial openings in the masonry infill wall are significant parameter affecting the seismic behavior of infilled frames thereby decreasing the lateral stiffness and strength. The possible effects of openings in the infill wall on seismic behavior of RC frames is analytically studied by means of pushover analysis of several bare, partially and fully infilled frames having different bay and story numbers. The stiffness loss due to partial opening is introduced by the stiffness reduction factors which are developed from finite element analysis of frames considering frame-infill interaction. Pushover curves of frames are plotted and the maximum base shear forces, the yield displacement, the yield base shear force coefficient, the displacement demand, interstory drift ratios and the distribution of story shear forces are determined. The comparison of parameters both in terms of seismic demand and capacity indicates that partial openings decisively influences the nonlinear behavior of RC frames and cause a different behavior from that predicted for a bare frame or fully infilled frame.

On the fundamental period of infilled RC frame buildings

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Cavaleri, Liborio;Sarhosis, Vasilis;Athanasopoulou, Adamantia
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1175-1200
    • /
    • 2015
  • This paper investigates the fundamental period of vibration of RC buildings by means of finite element macro-modelling and modal eigenvalue analysis. As a base study, a number of 14-storey RC buildings have been considered "according to code designed" and "according to code non-designed". Several parameters have been studied including the number of spans; the span length in the direction of motion; the stiffness of the infills; the percentage openings of the infills and; the location of the soft storeys. The computed values of the fundamental period are compared against those obtained from seismic code and equations proposed by various researchers in the literature. From the analysis of the results it has been found that the span length, the stiffness of the infill wall panels and the location of the soft storeys are crucial parameters influencing the fundamental period of RC buildings.

Experimental Study on the Seismic Response of High-Rise RC Bearing-Wall Structures with Irregularity (고층 RC 벽식 비정정 구조물의 지진거동에 관한 실험적 연구)

  • 이한선;고동우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.321-328
    • /
    • 2003
  • The objective of this study is to investigate the seismic response of high-rise RC bearing-wall structures with irregularity. For this purpose, three 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have three different layouts of the plan : The first one is a moment-resisting frame system, the second has a infilled shear wall with symmetric plan and the third has a infilled shear wall with eccentricity, Then, these models were subjected to a series of earthquake excitations. The test results show the followings: 1) the existence of shear wall reduced greatly shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle, 2) the frame with shear wall resists most of overturning moment in severe earthquake, 3) the torsional behavior is almost independent of the translational, 4) the absorbed energy due to the overturning deformation has the largest portion in the total absorbed energy.

  • PDF

Flexural Behaviors of Prestressed Composite Girder Bridges subjected to Negative Flexural Moment (부모멘트를 받는 프리스트레스트 합성형교의 휨 거동)

  • Kang, Byeong-Su;Joo, Young-Tae;Sung, Won-Jin;Shin, Dong-Hun;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Prestressed composite girder bridges with concrete infilled steel tube at negative flexural moment region takes the advantages provided due to the interactive reaction in the steel tube and concrete interface layer, enhancing local buckling resistance and the concrete strength provided by the lateral confining effect of concrete. Two beams were tested to examine ultimate behaviors of prestressed composite girder bridges subjected to negative flexural moment. The experimental observations of the Prestressed composite girder bridges subjected to positive flexural moment are investigated and compared to the numerical results obtained by sectional analysis method, and 1-D. and 3-D. finite element analysis methods.

  • PDF

Evaluation of seismic response of soft-storey infilled frames

  • Santhi, M. Helen;Knight, G.M. Samuel;Muthumani, K.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.423-437
    • /
    • 2005
  • In this study two single-bay, three-storey space frames, one with brick masonry infill in the second and third floors representing a soft-storey frame and the other without infill were designed and their 1:3 scale models were constructed according to non-seismic detailing and the similitude law. The models were excited with an intensity of earthquake motion as specified in the form of response spectrum in Indian seismic code IS 1893-2002 using a shake table. The seismic responses of the soft-storey frame such as fundamental frequency, mode shape, base shear and stiffness were compared with that of the bare frame. It was observed that the presence of open ground floor in the soft-storey infilled frame reduced the natural frequency by 30%. The shear demand in the soft-storey frame was found to be more than two and a half times greater than that in the bare frame. From the mode shape it was found that, the bare frame vibrated in the flexure mode whereas the soft-storey frame vibrated in the shear mode. The frames were tested to failure and the damaged soft-storey frame was retrofitted with concrete jacketing and, subjected to same earthquake motions as the original frames. Pushover analysis was carried out using the software package SAP 2000 to validate the test results. The performance point was obtained for all the frames under study, therefore the frames were found to be adequate for gravity loads and moderate earthquakes. It was concluded that the global nonlinear seismic response of reinforced concrete frames with masonry infill can be adequately simulated using static nonlinear pushover analysis.

Experimental study and modeling of masonry-infilled concrete frames with and without CFRP jacketing

  • Huang, Chao-Hsun;Sung, Yu-Chi;Tsai, Chi-Hsin
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.449-467
    • /
    • 2006
  • Most existing concrete structures in Taiwan are considered nonductile due to insufficient transverse reinforcement and poor detailing of frame elements. Such features are fairly typical for buildings constructed prior to 1997, at which time the local building code was revised based on ACI 318-95. Among these structures, many contain perimeter or partition walls made of concrete or clay brick for architectural purposes. These walls, though treated as non-structural components in common design practice, could affect the structural behavior of the buildings during an earthquake. To study the behavior of such structures under seismic load, experiments were conducted on concrete frames of various configurations to show the force-deformation relationships, damage patterns, and other characteristics of the frames. For further interest, similar units with columns jacketed by carbon-fiber-reinforced-polymer (CFRP) were also tested to illustrate the effectiveness of this technique in the retrofit of concrete frames.

Shear strength of Cast-In Place R/C Infill Shear Wall (현장타설 철근콘크리트 끼움벽의 전단강도)

  • Choi Chang Sik;Lee Hye Yeon;Kim Sun Woo;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.247-250
    • /
    • 2005
  • The aim of Cast-In-Place(CIP) method is to upgrade the strength, ductility and stiffness of the structure to the required level. The main objective of this research is to investigate the shear and the flexural strength of reinforced concrete frames infilled with CIP reinforced concrete wall. For this three 1/3 scale, one-bay, one story reinforced concrete infill wall were tested under reversed cyclic loading simulating the seismic effect. Results of tests of CIP shear wall were reviewed to evaluate the current design provisions and to establish the feasible retrofitting method.

  • PDF

Compressive behavior of rectangular sandwich composite wall with different truss spacings

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xing-Yu;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.783-794
    • /
    • 2020
  • Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.

Optimal Tension Forces of Multi-step Prestressed Composite Girders Using Commercial Rolled Beams (상용압연 형강과 콘크리트 합성거더의 다단계 긴장력 최적설계)

  • 정홍시;김영우;박재만;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • The 1st and 2nd tension forces of the PSSC(Prestressed Steel and Concrete) girder constructed with commercial rolling beams and concrete are optimally designed. The design variables are the 1st and 2nd tension forces due to multi-step prestressing and live load. The objective function is set to the maximum live load. Design conditions are allowable stress at the top and bottom of slab, beam and infilled concrete due to a construction step. An Optimization of Matlab based program Is developed. The results show that the tendon position and concrete compression strength etc are important.

  • PDF