• Title/Summary/Keyword: Infilled Trenches

Search Result 5, Processing Time 0.024 seconds

Wave Screening Effectiveness of Infilled Trenches (방진벽의 표면가 산란효과)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.152-159
    • /
    • 1997
  • An analytical method is developed to study the propagation of surface waves across infilled trenches. The Green's function technique is used to estimate the reflection and transmission coefficients of Rayleigh waves across a semi-infinite plate inserted between two homogeneous quarter-spaces. After validating the method against experimental data, influence of the material contrast and the angle of incidence on the screening effectiveness of an infilled trench is examined.

  • PDF

Finite Element Simulation of Surface Wave Scattering (표면파 산란거동의 유한요소 해석)

  • 이종세;손윤기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.383-389
    • /
    • 1998
  • A numerical study is conducted to examine the wave scattering at infilled trenches which may be constructed to reduce the ground-transmitted vibration. The finite element method is used for the simulation of the wave propagation in the semi-infinite region. In order to keep the computational burden manageable, the absorbing boundaries are employed. The numerical technique is validated by modeling a published problem. The results are shown to be in good agreement with the published data. The screening effectiveness of the infilled trenches is then studied for different trench dimensions and material properties.

  • PDF

A Study on Using Infilled Trenches for Vibration Reduction of Underground Structures by Train Loading (열차하중에 의한 지중구조물의 소음진동감소를 위한 차단벽사용에 관한 연구)

  • 권기준;정대열;고철수;김용길;황성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.724-729
    • /
    • 2003
  • Installing vibration isolation in structures, such as structures adjacent to subways, may be delicatebecause of the proximity with the vibration source or because of the wave propagation path. This paper discusses on method that install isolation Pads on underground walls as a part of the vibration mitigation system, and also on its efficiency, The proposed method is proven to affect significantly the distribution of acceleration in the neighborhood of the structure and to reduce efficiently the maximum amplitude of the vibration. It is also seen that installing isolating pads until the depth of the foundations and deeper is more efficient than installing such device separately from the structure. This Study being limited to the comparison of installation methods, further Studies considering the thickness, stiffness and other parameters should be required.

  • PDF

A Numerical Study of Surface Wave Scattering at Infilled Trenches (방진벽에 의한 표면파 산란의 수치 해석)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.106-112
    • /
    • 1998
  • A numerical experiment is conduced to study the wave screening effectiveness of wave barriers which are constructed to reduce the ground-transmitted vibration. The finite element method is used for the simulation of the wave propagation behavior. In order to reduce the computational burden the absorbing boundary's one employed. Validity of the numerical model is checked by comparing the results with the published data. The screening effectiveness of the in filled trenches is then studied for different trench dimensions and material properties.

  • PDF

Isolation of the Open and Infilled Trenches for the Surface-Waves Induced by the Traffic Loads (교통하중에 의한 지반진동의 차단에 관한 연구)

  • Lee, Phil-Kyu;Kim, Moon-Kyum;Kwon, Hyung-Oh
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1900-1906
    • /
    • 2000
  • In this study, the vibration screening effectiveness of barriers which can isolate structures from ground-transmitted vibration generated by harmonic forces is performed. For high frequencies, the vibration screening effectiveness of barriers is analyzed from field tests, and compared with the results from numerical analyses using a commercial program, ANSYS. Using these numerical analysis procedures, the effectiveness for vibration with various low frequencies is predicted. The frequency analysis tests of surface waves are performed in order to estimate the dynamic material properties of soil for 100 Hz, 150 Hz, 200 Hz, and 250 Hz. Three-dimensional solid elements are used in order to consider the diffraction of waves in all directions. Spring-damper combination elements are used in order to avoid the reflection of waves on the boundary. The results of numerical analysis agree with those of field tests. From the results of this numerical analyses, the reduction of vibration for low frequencies induced by the traffic loads can be predicted.

  • PDF