• Title/Summary/Keyword: Infill type

Search Result 55, Processing Time 0.022 seconds

Basic study for development of bottom-up infill module for high rise building (고층 건축물을 위한 bottom-up Infill module 개발 기초 연구)

  • Sung, Soojin;Lim, Chaeyeon;Na, Youngju;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.164-165
    • /
    • 2015
  • Modular construction technique is an adaptation of factory-based mass production concept in ordinary manufacturing industries to construction industry and it assumes that panels, units, etc. are fabricated in factories and assembled in construction sites. Given its structural limitations, modular construction technique is primarily used in low-story buildings whose maximum height is usually five stories, but researchers are actively studying possible adaptation of modular construction technique to high-rise building designs these days as in the case of infill-type modular construction design. Infill-type modular construction technique, most frequently used in high-rise building construction projects, completes frame construction first in reinforced concrete structures and fills unit modules in such structures. However, infill-type modular construction technique leads to longer construction schedule accompanying increase in construction cost, cost overrun due to additional of temporary work, and possible damage to units in the wake of facility construction. Accordingly, this study is performed as a basic study for the development of bottom-up infill-type modular construction technique intended to construct structural frames and fill in units sequentially in a bid to address such drawbacks of current infill-type modular construction technique.

  • PDF

A Study on Tensile Strength Dependent on Variation of Output Condition of the X-shape Infill Pattern using FFF-type 3D Printing (융합 필라멘트 제조 방식의 3D 프린팅을 이용한 X자 형상 내부 채움 패턴의 출력 옵션 변화에 따른 인장강도 연구)

  • D. H. Na;H. J. Kim;Y. H. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.123-131
    • /
    • 2024
  • Plastic, the main material of FFF-type 3D printing, exhibits lower strength compared to metal. research aimed at increasing strength is needed for use in various industrial fields. This study analyzed three X-shape infill patterns(grid, lines, zigzag) with similar internal lattice structure. Moreover, tensile test considering weight and printing time was conducted based on the infill line multiplier and infill overlap percentage. The three X-shape infill patterns(grid, lines, zigzag) showed differences in nozzle paths, material usage and printing time. When infill line multiplier increased, there was a proportional increase in tensile strength/weight and tensile strength/printing time. In terms of infill overlap percentage, the grid pattern at 50% and the zigzag and lines patterns at 75% demonstrated the most efficient performance.

A Preliminary Study on the Establishment of Long-Life Housing Infill Information System (장수명주택 인필 정보시스템 구축에 관한 기초 연구)

  • Jung, Yoon-Hye;Hwang, EunKyoung;Kim, Eun-Young
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.51-59
    • /
    • 2017
  • Purpose: This study aims to set up the classification system for providing infill information and draw detailed infill information required by suppliers, thereby promoting the revitalization of long-life housing and utilizing such information as preliminary data for establishing web system, on which infill information required by users in the long-life housing design process are available. Method: For the method of study, the infill information classification system and detailed information were drawn through the analysis of existing building material information systems; and the survey targeting working-level personnel was carried out in order to verify the drawn information system. The results of this study can be summarized as follows. First, the hierarchical classification system (scheme) was selected by quoting the classification system by material type as infill type, after analyzing existing DB information systems and drawing the hierarchical classification system for infill. Second, the comparative analysis between infill was available to users for the detailed infill information of long-life housing, and the essential information and general information were selected for differentiating information. Results: First, the hierarchical classification system (scheme) was selected by quoting the classification system by material type as infill type, after analyzing existing DB information systems and drawing the hierarchical classification system for infill. Second, the comparative analysis between infill was available to users for the detailed infill information of long-life housing, and the essential information and general information were selected for differentiating information. Third, only approximately 30% of the survey respondents recognized the infill of long-life housing, but they did not recognize its difference from existing building materials. Fourth, through the analysis of paths to obtain infill information of long-life housing, it was confirmed that infill information was obtained mostly through books and research papers regarding long-life housing, followed by the existing information systems. The significance of the study lies in that it is differentiated from the previous information system as the information system specialized in the infill of long-life housing was established, and can be used as a measure to revitalize long-life housing market.

Blast behavior of steel infill panels with various thickness and stiffener arrangement

  • Lotfi, Saeid;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.587-600
    • /
    • 2018
  • Infill panel is the first element of a building subjected to blast loading activating its out-of-plane behavior. If the infill panel does not have enough ductility against the loading, it breaks and gets damaged before load transfer and energy dissipation. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Also, it plays a pivotal role in maintaining sensitive main parts against blast loading. Concerning enough ductility of the infill panel out-of-plane behavior, the impact force enters the horizontal diaphragm and is distributed among the lateral elements. This article investigates the behavior of steel infill panels with different thicknesses and stiffeners. In order to precisely study steel infill panels, different ranges of blast loading are used and maximum displacement of steel infill under such various blast loading is studied. In this research, finite element analyses including geometric and material nonlinearities are used for optimization of the steel plate thickness and stiffener arrangement to obtain more efficient design for its better out-of-plane behavior. The results indicate that this type of infill with out-of-plane behavior shows a proper ductility especially in severe blast loadings. In the blasts with high intensity, maximum displacement of infill is more sensitive to change in the thickness of plate rather the change in number of stiffeners such that increasing the number of stiffeners and the plate thickness of infill panel would decrease energy dissipation by 20 and 77% respectively. The ductile behavior of steel infill panels shows that using infill panels with less thickness has more effect on energy dissipation. According to this study, the infill panel with 5 mm thickness works better if the criterion of steel infill panel design is the reduction of transmitted impulse to main structure. For example in steel infill panels with 5 stiffeners and blast loading with the reflected pressure of 375 kPa and duration of 50 milliseconds, the transmitted impulse has decreased from 41206 N.Sec in 20 mm infill to 37898 N.Sec in 5 mm infill panel.

Optimal Printing Conditions of PLA Printing Material for 3D Printer (3D 프린터 PLA 출력재료의 최적 출력조건)

  • You, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.825-830
    • /
    • 2016
  • The purpose of this study optimizes the conditions of PLA printing material for 3D printer. Deltabot type 3D printer is used. The ranges of printing temperature, printing speed, and infill density are $195{\sim}215^{\circ}C$, 10~70mm/sec, and 10~100% respectively. From the results of printing temperature, printing quality is almost same every printing temperature. From the results of printing speed and infill density, printing quality is excellent under 40mm/sec, and over 50% respectively. Surface roughness is $2.28{\mu}mRa$ at $205^{\circ}C$, 10mm/sec, 100%, and is $5.93{\mu}mRa$ at $205^{\circ}C$, 70mm/sec. Surface roughness is directly proportional to the printing speed, and is inversely proportional to the infill density. Objects fabricated PLA printing material adhere bed at room temperature.

Influence of masonry infill on reinforced concrete frame structures' seismic response

  • Muratovic, Amila;Ademovic, Naida
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.173-189
    • /
    • 2015
  • In reality, masonry infill modifies the seismic response of reinforced concrete (r.c.) frame structures by increasing the overall rigidity of structure which results in: increasing of total seismic load value, decreasing of deformations and period of vibration, therefore masonry infill frame structures have larger capacity of absorbing and dissipating seismic energy. The aim of the paper is to explore and assess actual influence of masonry infill on seismic response of r.c. frame structures, to determine whether it's justified to disregard masonry infill influence and to determine appropriate way to consider infill influence by design. This was done by modeling different structures, bare frame structures as well as masonry infill frame structures, while varying masonry infill to r.c. frame stiffness ratio and seismic intensity. Further resistance envelope for those models were created and compared. Different structures analysis have shown that the seismic action on infilled r.c. frame structure is almost always twice as much as seismic action on the same structure with bare r.c. frames, regardless of the seismic intensity. Comparing different models resistance envelopes has shown that, in case of lower stiffness r.c. frame structure, masonry infill (both lower and higher stiffness) increased its lateral load capacity, in average, two times, but in case of higher stiffness r.c. frame structures, influence of masonry infill on lateral load capacity is insignificant. After all, it is to conclude that the optimal structure type depends on its exposure to seismic action and its masonry infill to r.c. frame stiffness ratio.

Investigation of short column effect of RC buildings: failure and prevention

  • Cagatay, Ismail H.;Beklen, Caner;Mosalam, Khalid M.
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • If an infill wall in a reinforced concrete frame is shorter than the column height and there is no initial gap between the column and the infill wall, the short column effect can occur during an earthquake shaking. This form of damage is frequently observed in many earthquake-damaged buildings all around the world and especially in Turkey. In this study, an effective method, which consists of placing additional infill wall segments surrounding the short column, to prevent this type of failure is examined. The influence of adding infill wall in the reduction of the shear force in the short column is also investigated. A parametric study is carried out for one-storey infilled frames with one to five bays using the percentage of the additional infill wall surrounding the short column and the number of spans as the parameters. Then the investigation is extended to a case of a multistorey building damaged due to short column effect during the 1998 Adana-Ceyhan earthquake in Turkey. The results show that the addition of the infill walls around the potential short columns is an effective way to significantly reduce the shear force.

Effect of frame connection rigidity on the behavior of infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.227-241
    • /
    • 2020
  • An experimental study has been carried out to investigate the effect of beam to column connection rigidity on the behavior of infilled steel frames. Five half scale, single-story and single-bay specimens, including four infilled frames, as well as, one bare frame, were tested under in-plane lateral cyclic reversal loading. The connections of beam to column for bare frame as well as two infill specimens were rigid, whereas those of others were pinned. For each frame type, two different infill panels were considered: (1) masonry infill, (2) masonry infill strengthened with shotcrete. The experimental results show that the infilled frames with pinned connections have less stiffness, strength and potential of energy dissipation compared to those with rigid connections. Furthermore, the validity of analytical methods proposed in the literature was examined by comparing the experimental data with analytical ones. It is shown that the analytical methods overestimate the stiffness of infilled frame with pinned connections; however, the strength estimation of both infilled frames with rigid and pinned connections is acceptable.

The effect of infill walls on the fundamental period of steel frames by considering soil-structure interaction

  • Kianoosh Kiani;Sayed Mohammad Motovali Emami
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.417-431
    • /
    • 2024
  • The fundamental period of vibration is one of the most critical parameters in the analysis and design of structures, as it depends on the distribution of stiffness and mass within the structure. Therefore, building codes propose empirical equations based on the observed periods of actual buildings during seismic events and ambient vibration tests. However, despite the fact that infill walls increase the stiffness and mass of the structure, causing significant changes in the fundamental period, most of these equations do not account for the presence of infills walls in the structure. Typically, these equations are dependent on both the structural system type and building height. The different values between the empirical and analytical periods are due to the elimination of non-structural effects in the analytical methods. Therefore, the presence of non-structural elements, such as infill panels, should be carefully considered. Another critical factor influencing the fundamental period is the effect of Soil-Structure Interaction (SSI). Most seismic building design codes generally consider SSI to be beneficial to the structural system under seismic loading, as it increases the fundamental period and leads to higher damping of the system. Recent case studies and postseismic observations suggest that SSI can have detrimental effects, and neglecting its impact could lead to unsafe design, especially for structures located on soft soil. The current research focuses on investigating the effect of infill panels on the fundamental period of moment-resisting and eccentrically braced steel frames while considering the influence of soil-structure interaction. To achieve this, the effects of building height, infill wall stiffness, infill openings and soil structure interactions were studied using 3, 6, 9, 12, 15 and 18-story 3-D frames. These frames were modeled and analyzed using SeismoStruct software. The calculated values of the fundamental period were then compared with those obtained from the proposed equation in the seismic code. The results indicate that changing the number of stories and the soil type significantly affects the fundamental period of structures. Moreover, as the percentage of infill openings increases, the fundamental period of the structure increases almost linearly. Additionally, soil-structure interaction strongly affects the fundamental periods of structures, especially for more flexible soils. This effect is more pronounced when the infill wall stiffness is higher. In conclusion, new equations are proposed for predicting the fundamental periods of Moment Resisting Frame (MRF) and Eccentrically Braced Frame (EBF) buildings. These equations are functions of various parameters, including building height, modulus of elasticity, infill wall thickness, infill wall percentage, and soil types.

A study of the infill wall of the RC frame using a quasi-static pushover analysis

  • Mo Shi;Yeol Choi;Sanggoo Kang
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.455-464
    • /
    • 2023
  • Seismologists now suggest that the earth has entered an active seismic period; many earthquake-related events are occurring globally. Consequently, numerous casualties, as well as economic losses due to earthquakes, have been reported in recent years. Primarily, significant and colossal damage occurs in reinforced concrete (RC) buildings with masonry infill wall systems, and the construction of these types of structures have increased worldwide. According to a report from the Ministry of Education in the Republic of Korea, many buildings were built with RC frames with masonry infill walls in the Republic of Korea during the 1980s. For years, most structures of this type have been school buildings, and since the Pohang earthquake in 2017, the government of the Republic of Korea has paid close attention to this social event and focused on damage from earthquakes. From a long-term research perspective, damage from structural collapse due to the short column effect has been a major concern, specifically because the RC frame with a masonry infill wall system is the typical form of structure for school buildings. Therefore, the short column effect has recently been a major topic for research. This study compares one RC frame with four different types of RC frames with masonry infill wall systems. Structural damage due to the short column effect is clearly analyzed, as the result of this research is giving in a higher infill wall system produces a greater shear force on the connecting point between the infill wall system and the column. The study is expected to be a useful reference for research on the short column effect in RC frames with masonry infill wall systems.