• Title/Summary/Keyword: Inference models

Search Result 443, Processing Time 0.023 seconds

Model Transformation and Inference of Machine Learning using Open Neural Network Format (오픈신경망 포맷을 이용한 기계학습 모델 변환 및 추론)

  • Kim, Seon-Min;Han, Byunghyun;Heo, Junyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.107-114
    • /
    • 2021
  • Recently artificial intelligence technology has been introduced in various fields and various machine learning models have been operated in various frameworks as academic interest has increased. However, these frameworks have different data formats, which lack interoperability, and to overcome this, the open neural network exchange format, ONNX, has been proposed. In this paper we describe how to transform multiple machine learning models to ONNX, and propose algorithms and inference systems that can determine machine learning techniques in an integrated ONNX format. Furthermore we compare the inference results of the models before and after the ONNX transformation, showing that there is no loss or performance degradation of the learning results between the ONNX transformation.

Nonparametric Bayesian Statistical Models in Biomedical Research (생물/보건/의학 연구를 위한 비모수 베이지안 통계모형)

  • Noh, Heesang;Park, Jinsu;Sim, Gyuseok;Yu, Jae-Eun;Chung, Yeonseung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.867-889
    • /
    • 2014
  • Nonparametric Bayesian (np Bayes) statistical models are popularly used in a variety of research areas because of their flexibility and computational convenience. This paper reviews the np Bayes models focusing on biomedical research applications. We review key probability models for np Bayes inference while illustrating how each of the models is used to answer different types of research questions using biomedical examples. The examples are chosen to highlight the problems that are challenging for standard parametric inference but can be solved using nonparametric inference. We discuss np Bayes inference in four topics: (1) density estimation, (2) clustering, (3) random effects distribution, and (4) regression.

A Formal Model and a Design of Inference Engine for Context-Aware Mobile Computing (컨텍스트 인지 모바일 컴퓨팅을 위한 정형모델 및 추론 시스템 설계)

  • Kim, Moon Kwon;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.239-250
    • /
    • 2013
  • Context-aware mobile computing has become the primary approach to realize automatic, autonomous, and user-centric computing in the context of largely increasing the amount of mobile devices used that embed available sensors. However, designing an inference engine nonetheless requires the tasks of analyzing contexts, situations that can be inferred, etc. Moreover, a mobile device has limited resources and limited computation capability, which results in recognizing the common sense of its unsuitable environment for processing inference. Hence, we propose context-situation reasoning elements and their formal models in this paper, and we verify the formal models' applicability by applying them to an example. Finally, we design and implement an inference engine that realize the context-situation inference elements in computing environment, and we experiment an example by using the proposed inference engine to verify applicability and reusability of the inference engine.

A variational Bayes method for pharmacokinetic model (약물동태학 모형에 대한 변분 베이즈 방법)

  • Parka, Sun;Jo, Seongil;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.9-23
    • /
    • 2021
  • In the following paper we introduce a variational Bayes method that approximates posterior distributions with mean-field method. In particular, we introduce automatic differentiation variation inference (ADVI), which approximates joint posterior distributions using the product of Gaussian distributions after transforming parameters into real coordinate space, and then apply it to pharmacokinetic models that are models for the study of the time course of drug absorption, distribution, metabolism and excretion. We analyze real data sets using ADVI and compare the results with those based on Markov chain Monte Carlo. We implement the algorithms using Stan.

A Note on Comparing Multistage Procedures for Fixed-Width Confidence Interval

  • Choi, Ki-Heon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.643-653
    • /
    • 2008
  • Application of the bootstrap to problems in multistage inference procedures are discussed in normal and other related models. After a general introduction to these procedures, here we explore in multistage fixed precision inference in models. We present numerical comparisons of these procedures based on bootstrap critical points for small and moderate sample sizes obtained via extensive sets of simulated experiments. It is expected that the procedure based on bootstrap leads to better results.

Hierarchical Bayesian Inference of Binomial Data with Nonresponse

  • Han, Geunshik;Nandram, Balgobin
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.45-61
    • /
    • 2002
  • We consider the problem of estimating binomial proportions in the presence of nonignorable nonresponse using the Bayesian selection approach. Inference is sampling based and Markov chain Monte Carlo (MCMC) methods are used to perform the computations. We apply our method to study doctor visits data from the Korean National Family Income and Expenditure Survey (NFIES). The ignorable and nonignorable models are compared to Stasny's method (1991) by measuring the variability from the Metropolis-Hastings (MH) sampler. The results show that both models work very well.

Reservoir Water Level Forecasting Using Machine Learning Models (기계학습모델을 이용한 저수지 수위 예측)

  • Seo, Youngmin;Choi, Eunhyuk;Yeo, Woonki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.97-110
    • /
    • 2017
  • This study investigates the efficiencies of machine learning models, including artificial neural network (ANN), generalized regression neural network (GRNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF), for reservoir water level forecasting in the Chungju Dam, South Korea. The models' efficiencies are assessed based on model efficiency indices and graphical comparison. The forecasting results of the models are dependent on lead times and the combination of input variables. For lead time t = 1 day, ANFIS1 and ANN6 models yield superior forecasting results to RF6 and GRNN6 models. For lead time t = 5 days, ANN1 and RF6 models produce better forecasting results than ANFIS1 and GRNN3 models. For lead time t = 10 days, ANN3 and RF1 models perform better than ANFIS3 and GRNN3 models. It is found that ANN model yields the best performance for all lead times, in terms of model efficiency and graphical comparison. These results indicate that the optimal combination of input variables and forecasting models depending on lead times should be applied in reservoir water level forecasting, instead of the single combination of input variables and forecasting models for all lead times.

Fault diagnosis system using qualitative models and interpreters

  • Shin, S.;Lee, Seon-Ho;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.275-278
    • /
    • 1996
  • This fault diagnosis system consists of qualitative models, qualitative interpreter, and inference engine. Qualitative models are formed by analysis of the relationships between faults and behaviors of sensor trends, which are described by state transition trees. Qualitative interpreter outputs confidence factors with three qualitative quantities which represent the states of sensor trends. And then, the possible faults are detected by inference module which matches the states of trends within a window size with the qualitative models using the well-known min-max operation.

  • PDF

Undecided inference using bivariate probit models (이변량 프로빗모형을 이용한 미결정자 추론)

  • Hong, Chong-Sun;Jung, Mi-Yang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1017-1028
    • /
    • 2011
  • When it is not easy to decide the credit scoring for some loan applicants, credit evaluation is postponded and reserve to ask a specialist for further evaluation of undecided applicants. This undecided inference is one of problems that happen to most statistical models including the biostatistics and sportal statistics as well as credit evaluation area. In this work, the undecided inference is regarded as a missing data mechanism under the assumption of MNAR, and use the bivariate probit model which is one of sample selection models. Two undecided inference methods are proposed: one is to make use of characteristic variables to represent the state for decided applicants, and the other is that more accurate and additional informations are collected and apply these new variables. With an illustrated example, misclassification error rates for undecided and overall applicants are obtainded and compared according to various characteristic variables, undecided intervals, and thresholds. It is found that misclassification error rates could be reduced when the undecided interval is increased and more accurate information is put to model, since more accurate situation of decided applications are reflected in the bivariate probit model.

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.