• 제목/요약/키워드: Inference and Uncertainty

검색결과 109건 처리시간 0.03초

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.

Bayesian model updating for the corrosion fatigue crack growth rate of Ni-base alloy X-750

  • Yoon, Jae Young;Lee, Tae Hyun;Ryu, Kyung Ha;Kim, Yong Jin;Kim, Sung Hyun;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.304-313
    • /
    • 2021
  • Nickel base Alloy X-750, which is used as fastener parts in light-water reactor (LWR), has experienced many failures by environmentally assisted cracking (EAC). In order to improve the reliability of passive components for nuclear power plants (NPP's), it is necessary to study the failure mechanism and to predict crack growth behavior by developing a probabilistic failure model. In this study, The Bayesian inference was employed to reduce the uncertainties contained in EAC modeling parameters that have been established from experiments with Alloy X-750. Corrosion fatigue crack growth rate model (FCGR) was developed by fitting into Paris' Law of measured data from the several fatigue tests conducted either in constant load or constant ΔK mode. These parameters characterizing the corrosion fatigue crack growth behavior of X-750 were successfully updated to reduce the uncertainty in the model by using the Bayesian inference method. It is demonstrated that probabilistic failure models for passive components can be developed by updating a laboratory model with field-inspection data, when crack growth rates (CGRs) are low and multiple inspections can be made prior to the component failure.

규칙처리 표현방식을 이용한 이상 보행용 전문가 시스템의 설계 (A Design of the Expert System for Diagnosis of Abnormal Gait by using Rule-Based Representation)

  • 이응상;이주형;이명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(II)
    • /
    • pp.1329-1332
    • /
    • 1987
  • This paper describes a design of the expert system for diagnosis of abnormal gait patients. This system makes the rule-based representation that can easily extend the knowledge-base and naturally represent the uncertainty, and the inference engine that uses forward chaining which covers the reasoning from the first condition to the goal. The results of inferring various maladies using this system are as follows: 1) In cases of progressive muscular dystrophy, cerebral vascular accident, peripheral neuropathic lesion and peroneal nerve injury, the result of inference is the same as that of medical specialists' with 100% accuracy. 2) In cases of Neuritis, Paralysis agitan and Brain tumor, the accuracy of inference is less than 50% compared to that of medical specialists. With above results, we decide that the rule-based representations of some maladies ard accurate relatively, but that the correction and the extention of some rules and some methods of problem solving are required in order to construct the complete expert system for diagnosis of abnormal gait patients.

  • PDF

컨텍스트 인식 기반 개인화 추천 서비스를 위한 사용자 행동패턴 추론 모델 (A Model to Infer Users' Behavior Patterns for Personalized Recommendation Service based Context-Awareness)

  • 서효석;이상용
    • 디지털융복합연구
    • /
    • 제10권2호
    • /
    • pp.293-297
    • /
    • 2012
  • 컨텍스트 인식 환경에서 개인화 추천 서비스를 제공하기 위해서는 수집된 컨텍스트 정보를 빠르게 분석하고, 효과적으로 사용자의 목적을 추론할 수 있어야 한다. 그러나 모바일 장비에서 수집되는 컨텍스트는 환경에 따라 데이터의 차이가 발생함으로 인해 기존의 추론 알고리즘을 그대로 적용하기에는 적합하지 않고 모바일 환경에 적합한 효율적인 알고리즘이 필요하다. 본 연구에서는 정보의 누락이나 오류 등으로 인한 손실을 최소화하기 위해 나이브 베이즈 분류기를 사용하여 행동 패턴을 분류하였다. 또한 사용자의 성향을 효과적으로 학습하고 행동 목적을 추론하기 위하여 패턴 매칭 기법을 시용하였다. 제안한 개인화 추천 서비스 시스템을 스마트폰에서 어플리케이션을 추천하는 서비스를 적용하여 정확도를 평가하였다.

Posterior density estimation for structural parameters using improved differential evolution adaptive Metropolis algorithm

  • Zhou, Jin;Mita, Akira;Mei, Liu
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.735-749
    • /
    • 2015
  • The major difficulty of using Bayesian probabilistic inference for system identification is to obtain the posterior probability density of parameters conditioned by the measured response. The posterior density of structural parameters indicates how plausible each model is when considering the uncertainty of prediction errors. The Markov chain Monte Carlo (MCMC) method is a widespread medium for posterior inference but its convergence is often slow. The differential evolution adaptive Metropolis-Hasting (DREAM) algorithm boasts a population-based mechanism, which nms multiple different Markov chains simultaneously, and a global optimum exploration ability. This paper proposes an improved differential evolution adaptive Metropolis-Hasting algorithm (IDREAM) strategy to estimate the posterior density of structural parameters. The main benefit of IDREAM is its efficient MCMC simulation through its use of the adaptive Metropolis (AM) method with a mutation strategy for ensuring quick convergence and robust solutions. Its effectiveness was demonstrated in simulations on identifying the structural parameters with limited output data and noise polluted measurements.

A Cascaded Fuzzy Inference System for University Non-Teaching Staff Performance Appraisal

  • Neogi, Amartya;Mondal, Abhoy Chand;Mandal, Soumitra Kumar
    • Journal of Information Processing Systems
    • /
    • 제7권4호
    • /
    • pp.595-612
    • /
    • 2011
  • Most organizations use performance appraisal system to evaluate the effectiveness and efficiency of their employees. In evaluating staff performance, performance appraisal usually involves awarding numerical values or linguistic labels to employees performance. These values and labels are used to represent each staff achievement by reasoning incorporated in the arithmetical or statistical methods. However, the staff performance appraisal may involve judgments which are based on imprecise data especially when a person (the superior) tries to interpret another person's (his/her subordinate) performance. Thus, the scores awarded by the appraiser are only approximations. From fuzzy logic perspective, the performance of the appraisee involves the measurement of his/her ability, competence and skills, which are actually fuzzy concepts that can be captured in fuzzy terms. Accordingly, fuzzy approach can be used to handle these imprecision and uncertainty information. Therefore, the performance appraisal system can be examined using Fuzzy Logic Approach, which is carried out in the study. The study utilized a Cascaded fuzzy inference system to generate the performance qualities of some University non-teaching staff that are based on specific performance appraisal criteria.

Frequentist and Bayesian Learning Approaches to Artificial Intelligence

  • Jun, Sunghae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권2호
    • /
    • pp.111-118
    • /
    • 2016
  • Artificial intelligence (AI) is making computer systems intelligent to do right thing. The AI is used today in a variety of fields, such as journalism, medical, industry as well as entertainment. The impact of AI is becoming larger day after day. In general, the AI system has to lead the optimal decision under uncertainty. But it is difficult for the AI system can derive the best conclusion. In addition, we have a trouble to represent the intelligent capacity of AI in numeric values. Statistics has the ability to quantify the uncertainty by two approaches of frequentist and Bayesian. So in this paper, we propose a methodology of the connection between statistics and AI efficiently. We compute a fixed value for estimating the population parameter using the frequentist learning. Also we find a probability distribution to estimate the parameter of conceptual population using Bayesian learning. To show how our proposed research could be applied to practical domain, we collect the patent big data related to Apple company, and we make the AI more intelligent to understand Apple's technology.

적응 퍼지 임피던스 제어기의 개발에 관한 연구 (A Study on Implementation of Adaptive Fuzzy Impedance Controller)

  • 임용택;장성민;김승우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2819-2821
    • /
    • 2000
  • We introduce Adaptive Fuzzy Impedance Controller for force control when robot contact with environment. Because robot and environment was always effected by nonlinear conditions. it needs to deal with parameter's uncertainty. As. it induced Fuzzy system in impedance controller. it used fuzzy inference logic that has robustness about uncertainty to tune impedance controller stiffness gain. We applied adaptive fuzzy impedance controller in One-Link Robot system and the method shows a good performance on desired position and force control with intensional contacting environment.

  • PDF

FUZZY HYPERCUBES: A New Inference Machines

  • Kang, Hoon
    • 한국지능시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.34-41
    • /
    • 1992
  • A robust and reliable learning and reasoning mechanism is addressed based upon fuzzy set theory and fuzzy associative memories. The mechanism stores a priori an initial knowledge base via approximate learning and utilizes this information for decision-making systems via fuzzy inferencing. We called this fuzzy computer architecture a 'fuzzy hypercube' processing all the rules in one clock period in parallel. Fuzzy hypercubes can be applied to control of a class of complex and highly nonlinear systems which suffer from vagueness uncertainty. Moreover, evidential aspects of a fuzzy hypercube are treated to assess the degree of certainty or reliability together with parameter sensitivity.

  • PDF

Neuro-Fuzzy 추론기법을 이용한 홍수 예.경보 (Flood Forecasting and Warning Using Neuro-Fuzzy Inference Technique)

  • 이재응;최창원
    • 한국수자원학회논문집
    • /
    • 제41권3호
    • /
    • pp.341-351
    • /
    • 2008
  • 최근 지구 온난화로 인한 이상기후의 영향으로 게릴라성 집중호우의 피해가 증가하고 있으므로 대하천뿐만 아니라 중 소하천에서도 홍수 예 경보의 중요성이 높아지고 있다. 기존의 홍수 예 경보 체계의 경우 유출량을 계산하는 전처리과정과 주 계산과정을 거치는 동안 많은 오차들이 발생하고, 누적되어 그 결과물(예측된 유출량) 속에 오차들이 내포되어 있다. 또한 유출모형의 적용에 필요한 매개변수들을 추정하기 위해서도 많은 실측자료가 필요하고, 많은 불확실성이 내재되어 있다. 본 연구에서는 기존의 홍수 예 경보 시스템의 문제점과 불확실성을 최대한 감소시키기 위해 ANFIS(Adaptive Neuro-Fuzzy Inference) 기법을 사용하였다. ANFIS는 신경회로망 기법을 사용한 data driven 모형으로 기존의 물리적 모형의 구축과정에서 필수적이었던 방대한 양의 물리적 자료를 배제하고 유역의 강우자료와 수위자료만으로 모형을 구축하고 수위 예측을 실시할 수 있다. 입력자료로는 시계열 강우자료와 수위자료를 사용하였고, 모형을 통하여 t+1, t+2, t+3 시간 후의 수위를 예측하였다. 탄천유역의 2003년부터 2005년까지의 강우사상을 이용하여 모형의 적용성과 타당성을 검토하였고, 2006년 실제 강우에 모형을 적용한 결과 실제 수위를 큰 오차 없이 모의할 수 있었다.