• Title/Summary/Keyword: Inference Systems

Search Result 991, Processing Time 0.025 seconds

The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System (유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용)

  • 최재호;오성권;안태천;황형수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

Fuzzy Causal Knowledge-Based Expert System

  • Lee, Kun-Chang;Kim, Hyun-Soo;Song, Yong-Uk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.461-467
    • /
    • 1998
  • Although many methods of knowledge acquisition has been developed in the expert systems field, such a need for causal knowledge acquisition has not been stressed relatively. In this respect, this paper is aimed at suggesting a causal knowledge acquisition process, and then investigate the causal knowledge-based inference process. A vehicle for causal knowledge acquisition is FCM (Fuzzy Cognitive Map), a fuzzy signed digraph with causal relationships between concept variables found in a specific application domain. Although FCM has a plenty of generic properties for causal knowledge acquisition, it needs some theoretical improvement for acquiring a more refined causal knowledge. In this sense, we refine fuzzy implications of FCM by proposing fuzzy implications of FCM by proposing fuzzy causal relationship and fuzzy partially causal relationship. To test the validity of our proposed approcach, we prototyped a causal knowledge-driven inference engine named CAKES and then experime ted with some illustrative examples.

  • PDF

INTERPOLATIVE REASONING FOE COMPUTATIONALLY EFFICIENT OPTIMAL FUZZY CONTROL

  • Kacprzyk, Janusz
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1270-1273
    • /
    • 1993
  • Fuzzy optimal control is considered. An optimal sequence of controls is sought best satisfying fuzzy constraints on the controls and fuzzy goals on the states (outputs), with a fuzzy system under control Control over a fixed and specified, implicitly specified, fuzzy, and infinite termination time is discussed. For computational efficiency a small number of reference fuzzy staters and controls is to be assumed by which fuzzy controls and stated are approximated. Optimal control policies reference fuzzy states are determined as a fuzzy relation used, via the compositional rule of inference, to derive an optimal control. Since this requires a large number of overlapping reference fuzzy controls and states implying a low computational efficiency, a small number of nonoverlapping reference fuzzy states and controls is assumed, and then interpolative reasoning is used to infer an optimal fuzzy control for a current fuzzy state.

  • PDF

Implement of Fuzzy Inference Hardware for Servo Control Using $\alpha$ -level Set Decomposition ($\alpha$-레벨집합 분해에 의한 서보제어용 퍼지추론 하드웨어의 구현)

  • Hong Soon-ill;Lee Yo-seob;Choi Jae-yong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.662-665
    • /
    • 2001
  • As the fuzzy control is applied to servo system the hardware implementation of the fuzzy information systems requires the high speed operations, short real time control and the small size systems. The aims of this study is to develop hardware of the fuzzy information systems to be apply to servo system. In this paper, we propose a calculation method of approximate reasoning for fuzzy control based on $\alpha$-level set decomposition of fuzzy sets by quantize $\alpha$-cuts. This method can be easily implemented with analog hardware. The influence of quantization levels of $\alpha$-cuts on output from fuzzy inference engine is investigated. It is concluded that 4 quantization levels give sufficient result for fuzzy control performance of do servo system. It examined useful with experiment for dc servo system.

  • PDF

Two-Input Max/Min Circuit for Fuzzy Inference System

  • P. Laipasu;A. Chaikla;A. Jaruwanawat;P. Pannil;Lee, T.;V. Riewruja
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.105.3-105
    • /
    • 2001
  • In this paper, a current mode two-input maximum (Max) and minimum (Min) operations scheme, which is a useful building block for analog fuzzy inference systems, is presented. The Max and Min operations are incorporated in the same scheme with parallel processing. The proposed scheme comprises a MOS class AB/B configuration and current mirrors. Its simple structure can provide a high efficiency. The performance of the scheme exhibits a very sharp transfer characteristic and high accuracy. The proposed scheme achieves a high-speed operation and is suitable for real-time systems. The simulation results verifying the performances of the scheme are agreed with the expected values.

  • PDF

CIS-A General Purpose Inference System for Building Expert System (전문가 시스템 구성을 위한 범용 추론 시스템-CIS)

  • Park, Jong Hoon;Choi, Jong Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.658-665
    • /
    • 1986
  • In this paper, we study a (condition interprete systdem CCIS) which is a general purpose inference system for building an expert system. Previously, most expert systems used fragmentary knowledge-representation and inexact inferencing methods. To solve the proboems of those systems we suggest an algorithm for more flexible deduction and a method of representing knowledge more naturally and consistently compared to those of other experst systems. The CIS is a systsdem which can infer all the current situations from communication with the user based on user discription of some situation. we used some medical data on hypertension and its complication to simulate the system and to prove the effectiveness of the system. The results show that with the proposed method one can realize an attractive expert system.

  • PDF

Fuzzy Rule Generation and Building Inference Network using Neural Networks (신경망을 이용한 퍼지 규칙 생성과 추론망 구축)

  • 이상령;이현숙;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.43-54
    • /
    • 1997
  • Knowledge acquisition is one of the most difficult problems in designing fuzzy systems. As application domains of fuzzy systems become larger and more complex, it is more difficult to find the relations among the system's input- outpiit variables. Moreover, it takes a lot of efforts to formulate expert's knowledge about complex systems' control actions by linguistic variables. Another difficulty is to define and adjust membership functions properly. Soin conventional fuzzy systems, the membership functions should be adjusted to improve the system performance. This is time-consuming process. In this paper, we suggest a new approach to design a fuzzy system. We design a fuzzy system using two neural networks, Kohonen neural network and backpropagation neural network, which generate fuzzy rules automatically and construct inference network. Since fuzzy inference is performed based on fuzzy relation in this approach, we don't need the membership functions of each variable. Therefore it is unnecessary to define and adjust membership functions and we can get fuzzy rules automatically. The design process of fuzzy system becomes simple. The proposed approach is applied to a simulated automatic car speed control system. We can be sure that this approach not only makes the design process of fuzzy systems simple but also produces appropriate inference results.

  • PDF

Component-Based Software Architecture for Biosystem Reverse Engineering

  • Lee, Do-Heon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.400-407
    • /
    • 2005
  • Reverse engineering is defined as the process where the internal structures and dynamics of a given system are inferred and analyzed from external observations and relevant knowledge. The first part of this paper surveys existing techniques for biosystem reverse engineering. Network structure inference techniques such as Correlation Matrix Construction (CMC), Boolean network and Bayesian network-based methods are explained. After the numeric and logical simulation techniques are briefly described, several representative working software tools were introduced. The second part presents our component-based software architecture for biosystem reverse engineering. After three design principles are established, a loosely coupled federation architecture consisting of 11 autonomous components is proposed along with their respective functions.

A Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.289-304
    • /
    • 2010
  • This paper proposes a novel scheme for cooperative spectrum sensing on distributed cognitive radio networks. A fuzzy logic rule - based inference system is proposed to estimate the presence possibility of the licensed user's signal based on the observed energy at each cognitive radio terminal. The estimated results are aggregated to make the final sensing decision at the fusion center. Simulation results show that significant improvement of the spectrum sensing accuracy is achieved by our schemes.

A Technology-based New Business Planning Model ; Fuzzy Inference Systems Approach (신규사업의 성공판정을 위한 퍼지추론모형)

  • 권철신;김태현
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.246-249
    • /
    • 2001
  • In this study we propose a technology selection model, which captures technology seeds for new business area by a fuzzy structural modeling method and then, design a model, which evaluates the validity of New Business Development plans for the selected technology seeds with regard to the properties of manufacturing, product, market, and economy as well. Finally, a fuzzy inference system is designed in order to decide the degree of success of New Business Development plans based on the preceding validity evaluation.

  • PDF