Browse > Article

Component-Based Software Architecture for Biosystem Reverse Engineering  

Lee, Do-Heon (Department of BioSystems, KAIST)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.5, 2005 , pp. 400-407 More about this Journal
Abstract
Reverse engineering is defined as the process where the internal structures and dynamics of a given system are inferred and analyzed from external observations and relevant knowledge. The first part of this paper surveys existing techniques for biosystem reverse engineering. Network structure inference techniques such as Correlation Matrix Construction (CMC), Boolean network and Bayesian network-based methods are explained. After the numeric and logical simulation techniques are briefly described, several representative working software tools were introduced. The second part presents our component-based software architecture for biosystem reverse engineering. After three design principles are established, a loosely coupled federation architecture consisting of 11 autonomous components is proposed along with their respective functions.
Keywords
reverse engineering; biosystem; network inference; simulation; component;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431: 931-945   DOI   PUBMED   ScienceOn
2 Nam, J. W., K. H. Han, E. S. Yoon, D. I. Shin, J. H. Jin, D. H. Lee, S. Y. Lee, and J. W. Lee (2004) In silico analysis of lactate producing metabolic network in Lactococcus lactis. Enzyme Microb. Technol. 35: 654-662   DOI   ScienceOn
3 Kim, W., K. C. Kim, E. K. Hong, and D. Lee (2000) A component-based architecture for preparing data in data warehousing. J. Obj. Oriented Prog. 13: 43-47
4 Weaver, D. C., C. T. Workman, and G. D. Stormo (1999) Modeling regulatory networks with weight matrices. Proc. Pac. Symp. Biocomput. 112-123
5 N. Friedman, M. Linial, I. Nachaman, and D. Pe'er (2000) Using Bayesian networks to analyze expression data, J. Comp. Biol., 7: 601-620   DOI   ScienceOn
6 Tamada, Y., S. Kim, H. Bannai, S. Imoto, K. Tashiro, S. Kuhara, and S. Miyano (2003) Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 19(S2): II227- II236   DOI
7 Yoo, C., V. Thorsson, and G. F. Cooper (2000) Discovery of causal relationships in a gene regulation pathway from a mixture of experimental and observational DNA microarray data. Proc. Pac. Symp. Biocomput. 498-509
8 Kauffman, S. A. (1991) Antichaos and adaptation. Sci. Am. 265: 78-84   DOI   ScienceOn
9 Shimulevich, I., E. R. Dougherty, S. Kim, and W. Zhang (2002) Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18: 261-274   DOI   ScienceOn
10 Fukuda, K. and T. Takagi (2001) Knowledge representation of signal transduction pathways. Bioinformatics 17: 829-837   DOI   ScienceOn
11 Loew, L. M. and J. Schaff (2001) The Virtual Cell: A Software Environment for Computational Cell Biology, Trends Biotechnol. 19: 401-406   DOI   ScienceOn
12 Hucka, M., A. Finney, H. M, Sauro, H. Bolouri, J. Doyle, and H. Kitano (2002) The ERATO Systems Biology Workbench: enabling interaction and exchange between software tools for computational biology. Proc. Pac. Symp. Biocomput. 450-461
13 Hucka, M, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J. H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le Novere, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19: 524-531   DOI   ScienceOn
14 Akutsu, T., S. Miyano, and S. Kuhara (2000) Algorithms for inferring qualitative models of biological networks. Proc. Pac. Symp. Biocomput. 293-304
15 Lee, D. Y., H. Yun, S. Park, and S. Y. Lee (2003) Meta-FluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19: 2144-2146   DOI   ScienceOn
16 Liang, S., S. Fuhrman, and R. Somogyi (1998) REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. Proc. Pac. Symp. Biocomput. 18-29
17 Voit, E. (2000) Computational analysis of biochemical systems, Cambridge Univ. Press
18 Thomas, R. (1991) Regulatory networks seen as asynchronous automata: A logical description. J. Theor. Biol. 153: 1-23   DOI
19 Shapiro, B. and E. Mjolsness (2001) Developmental Simulations with Cellerator. Proc. Second International Conference on Systems Biology, Pasadena, CA, USA
20 Yun, H., D. Y. Lee, J. Jeong, S. Lee, and S. Y. Lee (2005) MFAML: a standard data structure for representing and exchanging metabolic flux models. Bioinformatics 21: 3329-3330   DOI   ScienceOn
21 Arkin, A., P. D. Shen, and J. Ross (1997) A test case of correlation metric construction of a reaction pathway from measurements. Science 277: 1275-1279   DOI   ScienceOn
22 Csete, M. and J. Doyle (2002) Reverse engineering of biological complexity. Science 295: 1664-1669   DOI   PUBMED   ScienceOn
23 Phuong, T. M., D. Lee, and K. H. Lee (2004) Regression trees for regulatory element identification. Bioinformatics 20: 750-757   DOI   ScienceOn
24 Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504   DOI   ScienceOn
25 Hartemink, A. J., D. K, Gifford, T. S. Jaakkola, and R. A. Young (2002) Combining location and expression data for principled discovery of genetic regulatory network models. Proc. Pac. Symp. Biocomput. 437-449
26 Segal, E., M. Shapira, A. Regev, D. Peer, D. Botstein, D. Koller, and N. Friedman (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34: 166-176   DOI   ScienceOn
27 Mendes, P. (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem. Sci. 22: 361-363   DOI   PUBMED   ScienceOn
28 Brutlag, D. L., A. R. Galper, and D. H. Millis (1991) Knowledge-based simulation of DNA metabolism: prediction of enzyme action. Comput. Appl. Biosci. 7: 9-19
29 Pe'er, D., A. Regev, G. Elidan, and N. Friedman (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(S1): S215-S224   DOI
30 Schaff, J. and L. M. Loew (1999) The Virtual Cell, Pac. Symp. Biocomput. 228-239
31 Hofestadt, R. and F. Meineke (1995) Interactive modelling and simulation of biochemical networks. Comput. Biol. Med. 25: 321-334   DOI   ScienceOn
32 Tomita, M., K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Tanida, K. Yugi, J. C. Venter, and C. A. 3rd. Hutchison (1999) E-Cell: software environment for whole-cell simulation. Bioinformatics 15: 72-84   DOI   ScienceOn
33 Kauffman, S. A. (1969) Metabolic stability and epigenesist in randomly constructed genetic nets. J. Theor. Biol. 22: 437-467   DOI   PUBMED   ScienceOn
34 Kitano, H. (2002) Systems biology: a brief overview. Science 295: 1662-1664   DOI   PUBMED   ScienceOn
35 Goss, P. J. and J. Peccoud (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc. Natl. Acad. Sci. USA 95: 6750-6755   DOI
36 Kauffman, S. A. (1993) The Origins of Order: Self- Organization and Selection in Evolution. Oxford University Press, Oxford, UK
37 De Jong, H., J. Geiselmann, C. Hernandez, and M. Page (2003) Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19: 336-344   DOI   ScienceOn
38 Jin, J. H, U. S. Jung, J. W. Nam, Y. H. In, S. Y. Lee, D. H. Lee, and J. W. Lee (2005) Construction of comprehensive metabolic network for glycolysis with regulation mechanisms and effectors. J. Microbiol. Biotechnol. 15: 161-174
39 Peleg, M., I. Yeh, and R. B. Altman (2002) Modeling biological processes using workflow and Petri Net models. Bioinformatics 18: 825-837   DOI   ScienceOn
40 Lee, P. H. and D. H. Lee (2005) Modularized learning of genetic interaction networks from biological annotations and MRNA expression data. Bioinformatics 21: 2739-2747   DOI   ScienceOn
41 Akutsu, T., S. Miyano, and S. Kuhara (1999) Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Proc. Pac. Symp. Biocomput. 17-28
42 Di Bernardo, D., M. J. Thompson, T. S. Gardner, S. E. Chobot, E. L. Eastwood, A. P. Wojtovich, S. J. Elliott, S. E. Schaus, and J. J. Collins (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol. 23: 377-383   DOI   ScienceOn
43 Nagasaki, M., A. Doi, H. Matsuno, and S. Miyano (2003) Genomic Object Net: A platform for modelling and simulating biopathways. Appl. Bioinformatics 2: 181-184
44 Web Services Activity (2002) http://www.w3c.org/2002/ws