• 제목/요약/키워드: Inertness

검색결과 77건 처리시간 0.031초

Mechanical and Chemical Characterization of NbNx Coatings Deposited by ICP Assisted DC Magnetron Sputtering

  • Jun, Shinhee;Kim, Junho;Kim, Sunkwang;You, Yong Zoo;Cha, Byungchul
    • 열처리공학회지
    • /
    • 제27권1호
    • /
    • pp.10-14
    • /
    • 2014
  • Niobium nitride coatings have many potential thin film applications due to their chemical inertness, good mechanical properties, temperature stability and superconducting properties. In this study, $NbN_x$ coatings were prepared by inductively coupled plasma (ICP) assisted DC magnetron sputtering method on the surface of AISI 304 austenitic stainless steels. Effects of target power were studied on mechanical and chemical properties of the coatings. The coating structure was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The coating hardness was measured by micro-knoop hardness tester. The coating thickness was measured using a 3D profiler and wear characteristics were estimated using a ball-on-disk wear tester. The thickness of the $NbN_x$ coatings increased linearly from 300 nm to 2000 nm as the Nb target power increased, and it showed over $HK_{0.005}$ 4000 hardness above Nb target power of 300 W. Hexagonal ${\delta}^{\prime}$-NbN phase and cubic ${\delta}$-NbN phase were observed in the coating films and the hardness of the NbNx coatings was higher when these two peaks were mixed. The corrosion resistance increased with the increase of the Nb target power.

c-axis Tunneling in Intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ Single Crystals

  • Lee, Min-Hyea;Chang, Hyun-Sik;Doh, Yong-Joo;Lee, Hu-Jong;Lee, Woo;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.260-260
    • /
    • 1999
  • We compared c-axis tunneling characteristics of small stacked intrinsic Josephson junctions prepared on the surface of pristine, I-, and HgI$_2$-intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ (Bi2212) single crystals. The R(T) curves are almost metallic in I-Bi2212 specimens, but semiconducting in HgI$_2$-Bi2212 ones.· The transition temperatures were 82.0 K, 73.0 K, and 76.8 K for pristine Bi2212, I-Bi2212, and HgI2-Bi2212 specimens, respectively, consistent with p-T$_c$ phase diagram. Current-voltage (IV) characteristics of both kinds of specimens show multiple quasiparticle branches with well developed gap features, indicating Josephson coupling is established between neighboring CuO$_2$ planes. The critical current I$_c$ of I-Bi2212 is almost the same as of that of pristine crystals, but I$_c$ is much reduced in Hgl$_2$-Bi2212. In spite of expanded interlayer distances, the interlayer coupling is not significantly affected in I-Bi2212due to holes generated by iodine atoms. The coupling in HgI$_2$-Bi2212 is, however, weakened due to inertness of HgI$_2$ molecules and the expansion of interlayer distance. Relation between the superconducting transition temperature T$_c$ and the critical current I$_c$ seems to contradict Anderson's interlayer-pair-tunneling theory but agree with a modified version of it.

  • PDF

Surface and Chemical Properties of Surface-Modified UHMWPE Powder and Mechanical and Thermal Properties of Its Impregnated PMMA Bone Cement V. Effect of Silane Coupling Agent on the Surface Modification of UHMWPE Powder

  • Yang Dae Hyeok;Yoon Goan Hee;Shin Gyun Jeong;Kim Soon Hee;Rhee John M.;Khang Gilson;Lee Hai Bang
    • Macromolecular Research
    • /
    • 제13권2호
    • /
    • pp.120-127
    • /
    • 2005
  • Conventional poly(methyl methacrylate) (PMMA) bone cement has been widely used as an useful biopolymeric material to fix bone using artificial prostheses. However, many patients had to be reoperated, due to the poor mechanical and thermal properties of conventional PMMA bone cement, which are derived from the presence of unreacted MMA liquid, the shrinkage and bubble formation that occur during the curing process of the bone cement, and the high curing temperature ($above 100^{\circ}C$) which has to be used. In the present study, a composite PMMA bone cement was prepared by impregnating conventional PMMA bone cement with ultra high molecular weight polyethylene (UHMWPE) powder, in order to improve its mechanical and thermal properties. The UHMWPE powder has poor adhesion with other biopolymeric materials due to the inertness of the powder surface. Therefore, the surface of the UHMWPE powder was modified with two kinds of silane coupling agent containing amino groups (3-amino propyltriethoxysilane ($TSL 8331^{R}$) and N-(2-aminoethyl)-3-(amino propyltrimethoxysilane) ($TSL 8340^{R}$)), in order to improve its bonding strength with the conventional PMMA bone cement. The tensile strengths of the composite PMMA bone cements containing $3 wt\%$ of the UHMWPE powder surface-modified with various ratios of $TSL 8331^{R}$ and $TSL 8340^{R}$ were similar or a little higher than that of the conventional PMMA bone cement. However, no significant difference in the tensile strengths between the conventional PMMA bone cement and the composite PMMA bone cements could be found. However, the curing temperatures of the composite PMMA bone cements were significantly decreased.

요양보호 서비스 활동 조사를 통한 요양보호사 교육과정의 문제점 분석 (Analyzing the Problem of the Caregiver Education System through a Research of the Caregiving Service Activity)

  • 서태수;김경태;전경희
    • The Journal of Korean Physical Therapy
    • /
    • 제20권4호
    • /
    • pp.61-69
    • /
    • 2008
  • Purpose: We evaluated caregivers' understanding of patients' diseases and disuse syndrome, the understanding of exercise and massage related to rehabilitation and the necessity of education about these, the difference in education and realities of the care-giving field, and the extra services needed in the field. Methods: The survey using questionnaires was performed from June 2008 to August 2008 with 220 people participated in caregive education programme in daegu city and area near dagu city. Among the 220 submitted questionnaires, 184 which were faithfully answered were selected and they were analyzed by i-STATistics statistical program. Results: The educational focus of the first and second level caregivers, as defined by the second clause of the 29th article of the Elderly Welfare law, is on basic knowledge of diseases such as dementia, stroke, and depression. However, other diseases are not covered and the information does not include information on decreased function, complications, functional rehabilitating exercises, or preventing disuse syndrome for long term patients. The most common diseases, in order of prevalence, are stroke, dementia, diabetes mellitus, Parkinson disease, arthritis, and geriatric inertness. The general level of awareness about disuse syndrome was low, and patients, while understanding the need for massage and rehabilitative exercise, receive little education about the proper methods and therefore cannot use them. Patients also did not understand how participating in these activities could reduce medical fees, indicating that further education on massage and rehabilitative exercise is needed. Caregivers desired to include positive rehabilitation, massage, and exercise-related services in their services. Finally, differences in caregiver education and reality resulted from a lack of diversity in education. Conclusion: We suggest providing education on disuse atrophy and improving the lack of diversity in the care-giving education system.

  • PDF

Influence of Kaolinite Clay Supplementation on Growth Performance and Digestive Function in Finishing Calf-fed Holstein Steers

  • Ortiz, Jose;Montano, Martin;Plascencia, Alejandro;Salinas, Jaime;Torrentera, Noemi;Zinn, Richard A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권11호
    • /
    • pp.1569-1575
    • /
    • 2016
  • Two experiments were conducted to examine the influence of kaolinite clay supplementation (0%, 1%, or 2% diet dry matter [DM] basis) on characteristics of digestion (Trial 1) and growth performance (Trial 2) in calf-fed Holstein steers fed a finishing diet. In Trial 1, 6 Holstein steers ($539{\pm}15kg$) with ruminal and duodenal cannulas were used to evaluate treatment effects on characteristics of digestion. Kaolinite clay supplementation decreased total tract DM digestion (linear effect, p<0.01) without effects ($p{\geq}0.10$) on site and extent of digestion of organic matter, neutral detergent fiber, starch and N, or ruminal microbial efficiency. There were no treatment effects on ruminal pH, volatile fatty acids molar proportions or estimated methane production. In Trial 2, 108 Holstein steers ($132.4{\pm}5.6kg$) were used in a 308-d study to evaluate growth performance and carcass characteristics. There were no treatment effects (p>0.10) on average daily gain (ADG) and gain efficiency (ADG/dry matter intake). Kaolinite supplementation tended (linear effect, p = 0.08) to increase dietary net energy (NE) during the initial 112-d period. However, the overall (308-d) effect of supplementation dietary NE was not appreciable (p>0.20). However, due to the inertness of kaolinite, itself, the ratio of observed-to-expected dietary NE increased with kaolinite supplementation. This effect was more pronounced (linear effect, $p{\leq}0.03$) during the initial 224 d of the study. Overall (308 d), kaolinite supplementation tended to increase (linear effect, p = 0.07) dietary NE by 3% over expected. Kaolinite supplementation did not affect carcass weight, yield grade, longissimus area, kidney, pelvic and heart fat, and quality grade, but decreased (linear effect, p = 0.01) dressing percentage. It is concluded that kaolinite supplementation up to 2% of diet DM may enhance energetic efficiency of calf-fed Holstein steers in a manner independent of changes in characteristics of ruminal and total tract digestion.

스퍼터링법으로 합성한 BCN 박막의 내식성 (Corrosion Behavior of Boron-Carbon-Nitride Films Synthesized by Magnet Sputtering)

  • 변응선;손명숙;이구현;권식철
    • 한국표면공학회지
    • /
    • 제36권3호
    • /
    • pp.229-233
    • /
    • 2003
  • Boron-Carbon-Nitrogen (B-C-N) system is an attractive ternary material since it has not only an extremely high hardness but also a number of other prominent characteristics such as chemical inertness, elevated melting point, and low thermal expansion. In this paper, the corrosion behavior of B-C-N thin films in aqueous solution was investigated B-C-N films with different composition were deposited on a platinum plate by magnetron sputtering in the thickness range of 150-280 nm. In order to understand effect of pH of solutions, $BC_{2.\;4}N$ samples were immerged in 1M HCl, 1M NaCl, and 1M NaOH solution at 298k, respectively. BCN samples with different carbon contents were exposed to 1M NaOH solutions to investigate effect of chemical composition on corrosion resistance. Corrosion rates of samples were measured by ellipsometry, From results, optical constant of $BC_{2,\;4}N$ films was found to be $N_2=2.110-0.295i$. The corrosion rates of $Bi_{1.\;0}C_{2.\;4}N_{1.\;0}$ films were NaOH>NaCl>HCl in orders. With increasing carbon content in B-C-N films, the corrosion resistance of B-C-N films was enhanced. The lowest corrosion rate was obtained for $B_{1.\;0}C_{4.\;4}N_{1.\;9}$ film.

차단기용 PTFE의 내아크성과 광반사율 (Arc Resistance and Light Reflectance of PTFE for Circuit Breaker)

  • 박효열;강동필;안명상;이태주;이태희;명인혜
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.200-203
    • /
    • 2003
  • A study on the arc resistance and light reflectance of PTFE (polytetrafluoroethylene) nozzle for circuit breaker is presented. PTFE has been used widely as a material for circuit breaker nozzle. PTFE has excellent electrical resistivity, high melt viscosity, chemical inertness, heat resistance and low loss factor. PTFE melts at $327\;^{\circ}C$ but the viscosity is very high above the melting point. In the arcing environment in a circuit breaker, the fraction of the power is emitted out of the arc and reaches the nozzle wall by radiation, causing ablation at the surface and in the depth of the wall. Some fraction of the radiation power emitted out of the arc directly break up the chemical bonds at the surface while some fraction of the radiation power penetrates into the wall, heats up the material to evaporation temperature and causes damages deeper inside the volume of the nozzle. In this paper, some fillers that have endurance in the high temperature arc environment were added into PTFE. Adding some fillers into PTFE was expected to be efficient in improving the endurability against radiation. The light reflectance and arc resistance of PTFE composites were investigated.

  • PDF

이온 빔 조사된 SiNx 박막의 액정 배향 효과에 관한 연구 (Investigation on Liquid Crystal Alignment Effects of SiNx Thin Film Irradiated by Ion Beam)

  • 이상극;김영환;김병용;한진우;강동훈;김종환;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.398-398
    • /
    • 2007
  • Most recently, the Liquid Crystal (LC) aligning capabilities achieved by ion beam exposure on the diamond-like carbon (DLC) thin film layer have been successfully studied. The DLC thin films have a high mechanical hardness, a high electrical resistance, optical transparency and chemical inertness. Nitrogen doped Diamond Like Carbon (NDLC) thin films exhibit properties similar to those of the DLC films and better thermal stability than the DLC films because C:N bonding in the NDLC film is stronger against thermal stress than C:H bonding in the DLC thin films. Moreover, our research group has already studied ion beam alignment method using the NDLC thin films. The nematic liquid crystal (NLC) alignment effects treated on the SiNx thin film layers using ion beam irradiation for three kinds of N rations was successfully studied for the first time. The SiNx thin film was deposited by plasma-enhanced chemical vapor deposition (PECVD) and used three kinds of N rations. In order to characterize the films, the atomic force microscopy (AFM) image was observed. The good LC aligning capabilities treated on the SiNx thin film with ion beam exposure for all N rations can be achieved. The low pretilt angles for a NLC treated on the SiNx thin film with ion beam irradiation were measure.

  • PDF

Hydrothermal Synthesis of $TiO_2$ Nanowire Array for Osteoblast Adhesion

  • Yun, Young-Sik;Kang, Eun-Hye;Hong, Min-Eui;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.275-275
    • /
    • 2013
  • Osteoblast is one of cells related with osseointegration and many research have conducted the adhesion of osteoblast onto the surface of implant. In the osseointegration, biocompatibility of the implant and cell adhesion to the surface are important factors. The researches related to cell adhesion have a direction from micro-scaled surface roughness to nano-scaled surface roughness with advancing nanotechnology. A cell reacts and sense to stimuli from extracellular matrix (ECM) and topography of the ECM [1]. Thus, for better osseointegration, we should provide an environment similar to ECM. In this study, we synthesize TiO2 nanowires using hydrothermal reaction because TiO2 provides inertness to titanium on its surface and enables it used as an implant material for the orthopedic treatment such as fixation of the bone fracture [2]. Ti substrate is immersed into NaOH aqueous solution. The solution are heated at $140{\sim}200^{\circ}C$ for various time (10~720 minutes). After heat treatment, we take out the sample and immerse it into HCl aqueous solution for 1 hour. The acid treated sample is heated again at $500^{\circ}C$ for 3 hours [3]. Then, we culture osteoblast on the TiO2 nanowires. For investigating cell adhesion onto nanostructured surface, we conduct several tests such as MTT assay, ALP (Alkaline phosphatase) activity assay, measuring calcium expression, and so on. These preliminary results of the cell culture on the nanowires are foundation for investigating cell-material interaction especially with nanostructure interaction.

  • PDF

Excluding molten fluoride salt from nuclear graphite by SiC/glassy carbon composite coating

  • He, Zhao;Song, Jinliang;Lian, Pengfei;Zhang, Dongqing;Liu, Zhanjun
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1390-1397
    • /
    • 2019
  • SiC coating and SiC/glassy carbon composite coating were prepared on IG-110 nuclear graphite (Toyo Tanso Co., Ltd., Japan) to strengthen its inertness to molten fluoride salt used in molten salt reactor (MSR). Two kinds of modified graphite were obtained and correspondingly named as IG-110-1 and IG-110-2, which referred to modified IG-110 with a single SiC coating and a SiC/glassy carbon composite coating, respectively. Both structure and property of modified graphite were carefully researched and contrasted with virgin IG-110. Results indicated that modified graphite presented better comprehensive properties such as more compact structure and higher resistance to molten salt infiltration. With the protection of coatings, the infiltration amounts of fluoride salt into modified graphite were much less than that into virgin IG-110 at the same circumstance. Especially, the infiltration amount of fluoride salt into IG-110-2 under 5 atm was merely 0.26 wt%, which was much less than that into virgin IG-110 under 1.5 atm (13.5 wt%) and the critical index proposed for nuclear graphite used in MSR (0.5 wt%). The SiC/glassy carbon composite coating gave rise to highest resistance to molten salt infiltration into IG-110-2, and thus demonstrated it could be a promising protective coating for nuclear graphite used in MSR.