• Title/Summary/Keyword: Inertial navigation system

Search Result 453, Processing Time 0.022 seconds

Psi Angle Error Model based Alignment Algorithm for Strapdown Inertial Navigation System (Psi각 오차모델 기반 스트랩다운 관성 항법 시스템의 정렬 알고리즘)

  • Park, Sul-Gee;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.183-189
    • /
    • 2011
  • An alignment algorithm for strapdown inertial navigation systems is proposed, in which the psi angle error model is utilized. The proposed alignment algorithm is derived from the Psi angle error model which has been widely used in real-time navigation systems. The equation for expecting steady state alignment error is also derived. The proposed algorithm was verified through real-time experiments. Experimental results show that the proposed algorithm can be used in the inertial navigation system and GNSS/INS integrated navigation system to get an initial attitude of the vehicle.

A Study on Methods of Measuring and Compensating Misalignment between Inertial Sensor Body and Housing Frame (관성항법장치의 관성 센서축과 하우징 축과의 비정렬 측정과 보상에 관한 연구)

  • Yu, Hae-Sung;Kim, Tae-Hoon;Kim, Cheon-Joong;Lee, Youn-Seon;Park, Heung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.374-380
    • /
    • 2012
  • In guided missile systems, reducing terminal-position error is the primary objective of the inertial navigation system. As a seeker is used to sense and track a target, the critical function of the inertial navigation system is to provide the seeker with accurate missile attitude information and help the seeker to keep tracking a target continuously. As inertial sensor body and missile body alignment errors are taken into account, it is desirable to minimize the alignment errors between the missile seeker and the attitude of inertial navigation system. Among the alignment errors, this paper addresses the methods of measuring and compensating misalignment between inertial sensor body and housing frame and shows test results of several experiments.

Analysis on Influence of Errors for Dual-axis Rotational Inertial Navigation System Performance (2축 회전형 관성항법장치 성능에 영향을 미치는 오차 분석)

  • Minsu Jo;Chanju Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.50-56
    • /
    • 2023
  • INS(Inertial Navigation System) calculates navigation information using a vehicle's acceleration and angular velocity without the outside information. However, when navigation is performed for a long time, navigation error gradually diverges and the performance decreases. To enhance INS's performance, the rotation of inertial measurement unit is developed to compensate error sources of inertial sensors, which is called RINS(Rotational Inertial Navigation System). This paper analyzes the influence of several errors for dual-axis RINS and the shows the results using simulation.

Gait State Classification by HMMS for Pedestrian Inertial Navigation System (보행용 관성 항법 시스템을 위한 HMMS를 통한 걸음 단계 구분)

  • Park, Sang-Kyeong;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1010-1018
    • /
    • 2009
  • An inertial navigation system for pedestrian position tracking is proposed, where the position is computed using inertial sensors mounted on shoes. Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it needs to reset errors frequently. During normal walking, there is an almost periodic zero velocity instance when a foot touches the floor. Using this fact, estimation errors are reduced and this method is called the zero velocity updating algorithm. When implementing this zero velocity updating algorithm, it is important to know when is the zero velocity interval. The gait states are modeled as a Markov process and each state is estimated using the hidden Markov model smoother. With this gait estimation, the zero or nearly zero velocity interval is more accurately estimated, which helps to reduce the position estimation error.

Analysis of Navigation Error According to Rotational Motions of Rotational Inertial Navigation for Designing Optimal Rotation Sequence (최적 회전 절차 설계를 위한 회전형 관성항법장치의 회전 동작별 항법 오차 분석)

  • Jae-Hyuck Cha;Chan-Gook Park;Seong-Yun Cho;Min-Su Jo;Chan-Ju Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.445-452
    • /
    • 2024
  • This paper analyzes the navigation error for each rotational motion in order to design an optimal rotation sequence, which is a key technology in the rotational inertial navigation. Rotational inertial navigation system is designed to cancel out navigation errors caused by inertial sensor errors by periodically rotating the inertial measurement unit. A properly sequenced rotational motion cancels out the maximum amount of navigation error and is known as an optimal rotation sequence. To design such an optimal turning procedure, this paper identifies the feasible rotational motions that can be implemented in a rotational inertial navigation system and analyzes the navigation error introduced by each rotational motion. In addition, by analyzing the characteristics of the navigation error generated during a rotation sequence in combination, this paper presents the conditions for designing an optimal rotation sequence.

Velocity Aided Navigation Algorithm to Estimate Current Velocity Error (해조류 속도 오차 추정을 통한 속도보정항법 알고리즘)

  • Choi, Yun-Hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.245-250
    • /
    • 2019
  • Inertial navigation system has navigation errors because of the error of inertial measurement unit (IMU) and misalignment over time. In order to solve this problem, aided navigation system is performed using global navigation satellite system (GNSS), speedometer, etc. The inertial navigation system equipped with underwater vehicle mainly uses speedometer and performed aided navigation because satellite signals do not pass through underwater. There are DVL, EM-Log, and RPM in the speedometer, and the sensors are applied according to the system environment. This paper describes velocity aided navigation using RPM of inertial navigation system operating in high speed and deep water environment. In addition, we proposes an algorithm to compensate the limit of RPM with straight direction and the current velocity error. There are results of monte-calo simulation to prove performance of the proposed algorithm.

A Study on the HWIL Simulation System of the Flight Object including Inertial Navigation System (관성항법장치가 포함된 비행체의 HWIL 시뮬레이션 시스템 개발 연구)

  • Lee, Ayeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.349-360
    • /
    • 2018
  • This paper proposes various methods for constructing a HWIL simulation system including Inertial Navigation System(INS) and Guidance Control Unit(GCU) under the assumption that the INS identifies the initial attitude of an aviation body through its own alignment and that it is a package consisting of an inertial sensor and a navigation computation module. This paper also presents a real-time computing technology and a way to calculate the command of the Flight Motion System(FMS) analogous to the acutal flight environment. The proposed HWIL simulation system is constructed by applying the above-mentioned methods and the results of running a series of simulations confirm high effectiveness and usefulness of the system. Finally, minor error factors that could be acquired only in HWIL simulation Environment are analyzed.

The Six-Position Calibration Technique of Gyro Bias for Rotational Inertial Navigation System Based on Ring Laser Gyroscope (링 레이저 자이로 기반 회전형 관성항법장치를 위한 6-자세 자이로 바이어스 교정 방법)

  • Yu, Haesung;Kim, Cheon-Joong;Lee, Inseop;Oh, Ju-Hyun;Sung, Chang-Ky;Lee, Sangjeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.189-196
    • /
    • 2019
  • The inertial sensor errors in SDINS(Strapdown Inertial Navigation System) can be compensated by rotating the inertial measurement unit and it is called RINS(Rotational Inertial Navigation System). It is assumed that the error of the inertial sensor in RINS is a static bias. However, the error of the inertial sensor actually developed and produced is not a static bias due to the change of the temperature applied to the sensor and the influence of the earth's gravity acceleration. In this paper, we propose a six-position gyro bias calibration method to evaluate the gyro bias required for RINS and present the test results of applying it to a ring laser gyro inertial navigation system under development.

Analysis of observability for strapdown inertial navigation system (스트랩다운 관성항법장치에 대한 가관측성 분석)

  • 정태호;박흥원;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.45-49
    • /
    • 1989
  • The observability of an strapdown inertial navigation system(SDINS) is investigated. The piece-wise constant systems are defined and the stepped observability matrix scheme is applied to observability analysis of SDINS theoretically, the results are compared with that of covariance simulation. It is found that SDINS is more observable than gimballed inertial navigation system (GINS) in the case of the variation of vehicle attitude, and is found that the stepped observability matrix theory is simple and useful for the analysis of the system observability but the results are not completely same as that of covariance simulation.

  • PDF