• 제목/요약/키워드: Inertial dynamic effect

검색결과 40건 처리시간 0.026초

E-Isolation : High-performance Dynamic Testing Installation for Seismic Isolation Bearings and Damping Devices

  • Yoshikazu Takahashi;Toru Takeuchi;Shoichi Kishiki;Yozo Shinozaki;Masako Yoneda;Koichi Kajiwara;Akira Wada
    • 국제초고층학회논문집
    • /
    • 제12권1호
    • /
    • pp.93-105
    • /
    • 2023
  • Seismic isolation and vibration control techniques have been developed and put into practical use by challenging researchers and engineers worldwide since the latter half of the 20th century, and after more than 40 years, they are now used in thousands of buildings, private residences, highways in many seismic areas in the world. Seismic isolation and vibration control structures can keep the structures undamaged even in a major earthquake and realize continuous occupancy. This performance has come to be recognized not only by engineers but also by ordinary people, becoming indispensable for the formation of a resilient society. However, the dynamic characteristics of seismically isolated bearings, the key elements, are highly dependent on the size effect and rate-of-loading, especially under extreme loading conditions. Therefore, confirming the actual properties and performance of these bearings with full-scale specimens under prescribed dynamic loading protocols is essential. The number of testing facilities with such capacity is still limited and even though the existing labs in the US, China, Taiwan, Italy, etc. are conducting these tests, their dynamic loading test setups are subjected to friction generated by the large vertical loads and inertial force of the heavy table which affect the accuracy of measured forces. To solve this problem, the authors have proposed a direct reaction force measuring system that can eliminate the effects of friction and inertia forces, and a seismic isolation testing facility with the proposed system (E-isolation) will be completed on March 2023 in Japan. This test facility is designed to conduct not only dynamic loading tests of seismic isolation bearings and dampers but also to perform hybrid simulations of seismically isolated structures. In this paper, design details and the realization of this system into an actual dynamic testing facility are presented and the outcomes are discussed.

전광파이버형 광파이버 자이로 (All-Fiber Optic Gyroscope)

  • 김인수;김요희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1840-1842
    • /
    • 1998
  • Gyroscope is a very important core sensor, as a rotation sensor in inertial space, in inertial guidance and navigation system on aeronautics, plane, vessel and so on for civilian and millitary applications. Mechnical gyroscopes, adopting a principle of spinning a top, have been used in many application system. These mechnical gyroscopes need high power consumption, long warming time and complicated peripheral devices. But fiber-optic gyroscopes, based on the Sagnac effect, have novel advantages as small volume. simple scheme, low power consumption and high reliability. So we have developed a Intermediate grade All-fiber Optic Gyroscope, which has open-loop and minimum reciprocal configuration scheme. We have designed feedback circuits for stability of amplitude and phase using four lock-in amplifier(LIA) circuits and also used for noise limitation. This paper describes the scheme of optical part and electronic part and also test results of this all-fiber optic gyroscope. The performance have been achieved as long-term bias drift of $9.54^{\circ}/h$, random walk of $0.0317^{\circ}/\sqrt{h}$ and dynamic range of ${\pm}150\;deg/s$.

  • PDF

Effects of diaphragm flexibility on the seismic design acceleration of precast concrete diaphragms

  • Zhang, Dichuan;Fleischman, Robert B.;Lee, Deuckhang
    • Computers and Concrete
    • /
    • 제25권3호
    • /
    • pp.273-282
    • /
    • 2020
  • A new seismic design methodology for precast concrete diaphragms has been developed and incorporated into the current American seismic design code. This design methodology recognizes that diaphragm inertial forces during earthquakes are highly influenced by higher dynamic vibration modes and incorporates the higher mode effect into the diaphragm seismic design acceleration determination using a first mode reduced method, which applies the response modification coefficient only to the first mode response but keeps the higher mode response unreduced. However the first mode reduced method does not consider effects of diaphragm flexibility, which plays an important role on the diaphragm seismic response especially for the precast concrete diaphragm. Therefore this paper investigated the effect of diaphragm flexibility on the diaphragm seismic design acceleration for precast concrete shear wall structures through parametric studies. Several design parameters were considered including number of stories, diaphragm geometries and stiffness. It was found that the diaphragm flexibility can change the structural dynamic properties and amplify the diaphragm acceleration during earthquakes. Design equations for mode contribution factors considering the diaphragm flexibility were first established through modal analyses to modify the first mode reduced method in the current code. The modified first mode reduced method has then been verified through nonlinear time history analyses.

지진 시 풍화지반(건조/포화)에 근입된 단말뚝의 동적거동 분석 (The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition)

  • 송수민;박종전;정상섬
    • 한국지반공학회논문집
    • /
    • 제38권1호
    • /
    • pp.17-33
    • /
    • 2022
  • 본 연구는 지하수 유무에 따른 지진시 풍화지반에 근입된 단말뚝의 동적 거동을 분석하기 위해 수치해석을 수행하였다. 3차원 유한차분해석 프로그램을 사용하여 지하수 및 지반 조건에 따라 동적 수치해석을 수행하였으며, 풍화지반의 물성은 현장에서 채취한 흙의 물성시험을 통해 해석에 적용하였다. 건조한 지반 및 포화된 지반은 Mohr-Coulomb, Finn model을 각각 적용하여 모델링하였고, 각각의 모델링은 원심모형실험 결과와 검증을 수행하였다. 해석결과, 전반적으로 지하수위가 존재하는 경우가 건조한 경우보다 더 큰 말뚝의 수평변형을 나타냈으며, 깊은 심도에서부터 그 차이가 크게 발생하는 것으로 확인되었다. 이는 포화지반에 지진이 발생하게 되면 과잉간극수압의 발생으로 인해 지반 구속압이 감소하게 되는 현상에 지배되는 것으로 확인되었다. 또한, 지반에 근입된 말뚝의 영향으로 인근 지반에서의 전단변형률이 작게 발생하고, 과잉간극수압은 말뚝과 멀리 떨어진 지반에 비해 작게 증가하는 경향을 보였다.

Large Eddy Simulation of the Dynamic Response of an Inducer to Flow Rate Fluctuations

  • Kang, Dong-Hyuk;Yonezawa, Koichi;Ueda, Tatsuya;Yamanishi, Nobuhiro;Kato, Chisachi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.431-438
    • /
    • 2009
  • A Large Eddy Simulation (LES) of the flow in an inducer is carried out under flow rate oscillations. The present study focuses on the dynamic response of the backflow and the unsteady pressure performance to the flow rate fluctuations under non-cavitation conditions. The amplitude of angular momentum fluctuation evaluated by LES is larger than that evaluated by RANS. However, the phase delay of backflow is nearly the same as RANS calculation. The pressure performance curve exhibits a closed curve caused by the inertia effect associated with the flow rate fluctuations. Compared with simplified one dimensional evaluation of the inertia component, the component obtained by LES is smaller. The negative slope of averaged performance curve becomes larger under unsteady conditions. From the conservations of angular momentum and energy, an expression useful for the evaluation of unsteady pressure rise was obtained. The examination of each term of this expression show that the apparent decrease of inertia effects is caused by the response delay of Euler's head and that the increase of negative slope is caused by the delay of inertial term associated with the delay of backflow response. These results are qualitatively confirmed by experiments.

New Guidance Filter Structure for Homing Missiles with Strapdown IIR Seeker

  • Kim, Tae-Hun;Kim, Jong-Han;Kim, Philsung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.757-766
    • /
    • 2017
  • For implementing the proportional navigation guidance law on passive homing missiles equipped with strapdown imaging infrared seekers, the line-of-sight angles and rates with respect to the inertial frame should be estimated by carefully handling the parasitic instability effect due to the seeker's latency. By introducing a new state vector representation along with the Pade approximation for compensating the time-delay of the seeker, this paper proposes a new guidance filter structure, stochastic dynamic models and measurement equations, in three-dimensional homing problem. Then, it derives the line-of-sight angle and rate estimator in general two-dimensional engagement by applying the extended Kalman filter to the proposed structure. The estimation performance and the characteristics of the proposed filter were evaluated via a series of numerical experiments.

Feedback Controller Design for a In-plane Gimbaled Micro Gyroscope Using H-infinity and State Weighted Model Reduction Techniques

  • Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang;Kim, Yong-Kweon;Hakyoung Chung;Chang, Hyun-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.39.3-39
    • /
    • 2002
  • In this paper, presented is a feedback control loop, for an in-plane gimbaled micro gyroscope based on methodology and state weighted model reduction technique. The micro gyroscope is the basic inertial sensors. To improve the performances such as stability, wide dynamic range, bandwidth and especially robustness, it is necessary to design a feedback control loop, which must be robust, because the manufacturing process errors can be large. Especially, to obtain wide bandwidth, the feedback controller is indispensable, because the gyroscope is high Q factor system and has small open loop bandwidth. Moreover, the feedback controller reduces the effect...

  • PDF

공중재급유를 위한 상대운동방정식 유도 및 검증 (Derivation and Verification of the Relative Dynamics Equations for Aerial Refueling)

  • 장지은;이상종;유혁
    • 한국항공운항학회지
    • /
    • 제21권4호
    • /
    • pp.1-10
    • /
    • 2013
  • This paper addresses the derivation of 6-DOF equation of Tanker and Receiver's aircraft for aerial refueling. The new set of nonlinear equations are derived in terms of the relative translational and rotational motion of receiver aircraft respect to the tanker aircraft body frame. Further the wind effect terms due to the tanker's turbulence are included. The derivation of absolute dynamic equation for tanker aircraft written in the inertial frame is calculated from the relative dynamics equations of receiver. The derived relative and absolute equations are implemented the simulation in the same flight conditions to verify the relative motion and compare the trim results by using the MATLAB/SIMULINK program.

축대칭 발사체의 감쇠계수 계산을 위한 정상 해법 (A Steady Method of Damping Coefficient Prediction for Axisymmetric Projectiles)

  • 박수형;권장혁;유영훈
    • 한국항공우주학회지
    • /
    • 제34권11호
    • /
    • pp.1-8
    • /
    • 2006
  • 축대칭 발사체의 동적 감쇠계수를 계산하기 위한 정상 예측 방법을 제안한다. 관성좌표계에서 영스핀 코닝 운동을 사용한 정상 해법을 적용하기 위해서는 점성유동 해석이 필수적으로 이루어져야 한다. 제안된 방법을 회전발사체에 적용하여 피칭모멘트와 피치감쇠 모멘트계수를 계산하였다. 결과는 포물형 Navier-Stokes 예측 결과, 실험결과, 비정상 예측 결과와 잘 일치함을 확인하였다. 또한, secant-ogive-cylinder 계열 발사체에 대한 정적 및 동적 계수의 축방향 생성과정을 살펴봄으로써 후방동체의 형상으로 인한 유동 변화가 동적 안정성에 미치는 영향을 고찰하였다.

실 운전조건에서의 배기유동패턴이 근접장착 촉매변환기의 성능 및 신뢰성에 미치는 영향에 관한 수치적 연구 (Numerical Study on the Effect of Exhaust Flow Pattern under Real Running Condition on the Performance and Reliability of Closed-Coupled Catalyst)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.54-61
    • /
    • 2004
  • The engine-out flow is highly transient and hot, and may place tremendous thermal and inertial loads on a closed-coupled catalyst. Therefore, time-dependent and detailed flow and thermal field simulation may be crucial. The aim of this study is to develop combined chemical reaction and multi-dimensional fluid dynamic mathematical model and to study the effect of unsteady pulsating thermal and flow characteristics on thermal reliability of closed-coupled catalyst. The effect of cell density on the conversion performance under real running condition is also investigated. Unlike previous studies, the present study focuses on coupling between the problems of pulsating flow pattern and catalyst thermal response and conversion efficiency. The results are expressed in terms of temporal evolution of flow, pollutant and temperature distribution as well as transient characteristics of conversion efficiency. Fundamental understanding of the flow and thermal phenomena of closed-coupled catalyst under real running condition is presented. It is shown that instants of significantly low values of flow uniformity and conversion efficiency exist during exhaust blowdown and the temporal varaition of flow uniformity is very similar in pattern to one of conversion efficiency. It is also found that the location of hot spot in monolith is directly affected by transient flow pattern in closed-coupled catalyst.