• Title/Summary/Keyword: Inertial Sensor

Search Result 428, Processing Time 0.03 seconds

Implementation of Motion Analysis System based on Inertial Measurement Units for Rehabilitation Purposes (재활훈련을 위한 관성센서 기반 동작 분석 시스템 구현)

  • Kang, S.I.;Cho, J.S.;Lim, D.H.;Lee, J.S.;Kim, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.47-54
    • /
    • 2013
  • In this paper, we present an inertial sensor-based motion capturing system to measure and analyze whole body movements. This system implements a wireless AHRS(attitude heading reference system) we developed using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. We performed 3D motion capture using the quaternion data calculated. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE of 2.56 degree. The results suggest that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limbs or gait analysis during the post-stroke recovery process.

  • PDF

Aided Navigation Algorithm for Land Navigation System Using VMS with Indirect Drive Condition (직진성이 보장되지 않는 조건에서 지상항법시스템의 속도계를 이용한 보정항법 알고리즘)

  • Kim, Hyungsoo
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.314-320
    • /
    • 2016
  • Inertial navigation system (INS) has used aided systems and sensors to compensate navigation error. Global navigation satellite system (GNSS), velocity measurement sensor (VMS), and radar are commonly used to aid INS. Land navigation system (LNS) also mainly uses VMS when GNSS cannot be used such as at tunnel or on jammed scenario. A straight drive is required when VMS-aided navigation is used, because there is only speed of straight direction whereas no crossways and vertical directions. In local environment, even an expressway has lack of straight drive which is constraint of VMS-aided navigation algorithm. This paper proposes an enhanced VMS-aided navigation algorithm for LNS with indirect drive by restricting filter update condition. Also, there is a result of vehicle test to prove performance of the proposed algorithm.

Kinematic Study of Lower Extremity Movements in Unskilled and Expert Snowboarders During Snowboard Simulator Exercises (스노보드 시뮬레이터 운동 시 전문가와 비전문가의 하지 운동특성 분석)

  • Park, Sunwoo;Ahn, Soonjae;Kim, Jongman;Shin, Isu;Choi, Eunkyoung;Kim, Youngho
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.109-114
    • /
    • 2015
  • In this study, joint angles of the lower extremity and tibial acceleration and angular velocity were measured during a snowboard simulator exercises in order to evaluate the skill of snowboarders. Ten unskilled and ten expert snowboarders were recruited for the study. A three-dimensional motion capture system and two inertial sensor modules were used to acquire joint movements, acceleration and angular velocity of the lower extremities during snowboard simulator exercises. Pattern variations were calculated to assess variations in the snowboard simulator motion of unskilled and expert snowboarders. Results showed that expert snowboarders showed greater range of motion in joint angles and greater peak to peak amplitude in acceleration and angular velocity for tibia than unskilled snowboarders. The unskilled snowboarders did not show symmetrical shape(same magnitude but opposite direction) in tibial angular velocity during two edge turns in snowboard simulator exercises. The expert snowboarders showed smaller pattern variations for joint angle of lower extremity, tibial acceleration and tibial angular velocity than unskilled snowboarders. Inertial sensor data and pattern variations during the snowboard simulator exercises could be useful to evaluate the skill of snowboarders.

Validity of a Portable APDM Inertial Sensor System for Stride Time and Stride Length during Treadmill Walking

  • Tack, Gye Rae;Choi, Jin Seung
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • Objective: The purpose of this study was to compare the accuracy of stride time and stride length provided by a commercial APDM inertial sensor system (APDM) with the results of three dimensional motion capture system (3D motion) during treadmill walking. Method: Five healthy men participated in this experiment. All subjects walked on the treadmill for 3 minutes at their preferred walking speed. The 3D motion and the APDM were simultaneously used for extracting gait variables such as stride time and stride length. Mean difference and root mean squared (RMS) difference were used to compare the measured gait variables from the two measurement devices. The regression equation derived from the range of motion of the lower limb was also applied to correct the error of stride length. Results: The stride time extracted from the APDM was almost the same as that from the 3D motion (the mean difference and RMS difference were less than 0.0001 sec and 0.0085 sec, respectively). For stride length, mean difference and RMS difference were less than 0.1141 m and 0.1254 m, respectively. However, after correction of the stride length error using the derived regression equation, the mean difference and the RMS difference decreased to 0.0134 m and 0.0556 m or less, respectively. Conclusion: In this study, we confirmed the possibility of using the temporal variables provided from the APDM during treadmill walking. By applying the regression equation derived only from the range of motion provided by the APDM, the error of the spatial variable could be reduced. Although further studies are needed with additional subjects and various walking speeds, these results may provide the basic data necessary for using APDM in treadmill walking.

Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle (반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험)

  • Lee, Chong-Moo;Lee, Pan-Mook;Kim, Sea-Moon;Hong, Seok-Won;Seo, Jae-Won;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.141-148
    • /
    • 2003
  • This paper presents a rotating ann test for assessment of an underwater hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. The rotating ann tests are conducted in the Ocean Engineering Basin of KRISO, KORDI to generate circular motion in laboratory, where the USBL system was absent in the basin. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

  • PDF

Single Gyroscope Sensor Module System for Gait Event Detection (보행시점 검출을 위한 단일 각속도 센서모듈 시스템)

  • Kang, Dong-Won;Choi, Jin-Seung;Kim, Han-Su;Oh, Ho-Sang;Seo, Jeong-Woo;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • The purpose of this study was to develop the inertial sensor module system to detect gait event using single angular rate sensor(gyroscope), and evaluate the accuracy of this system. This sensor module is attached at the heel and gait events such as heel strike, foot flat, heel off, toe off are detected by using proposed automatic event detection algorithm. The developed algorithm detect characteristics of pitch data of the gyroscope to find gait event. To evaluate the accuracy of system, 3D motion capture system was used and synchronized with sensor module system for comparison of gait event timings. In experiment, 6 subjects performed 5 trials level walking with 3 different conditions such as slow, preferred and fast. Results showed that gait event timings by sensor module system are similar to that by kinematic data, because maximum absolute errors were under 37.4msec regardless of gait velocity. Therefore, this system can be used to detect gait events. Although this system has advantages of small, light weight, long-term monitoring and high accuracy, it is necessary to improve the system to get other gait information such as gait velocity, stride length, step width and joint angles.

Development of a Squat Angle Measurement System using an Inertial Sensor (관성 센서기반 스쿼트 각도 측정 융합 시스템 개발)

  • Joo, Hyo-Sung;Woo, Ji-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.355-361
    • /
    • 2020
  • The squat is an exercise that can effectively improve the muscle strength of the lower body, which can be performed in a variety of places without restrictions on places including homes. However, injuries due to incorrect motion or excessive angles are frequently occurring. In this study, we developed a single sensor-based squat angle measurement system that can inform the squat angle according to the correct motion during the squat exercise. The sensor module, including the acceleration sensor and the gyro sensor, is attached to the user's thigh. The squat angle was calculated using the complementary filter complementing the pros and cons of acceleration and gyro sensor. It was found that the calculated squat angle showed the proper correlation compared to the squat angle measured by a goniometer, and the influence of the coefficient of the complementary filter on the accuracy was evaluated.

A Hand Gesture Recognition Method using Inertial Sensor for Rapid Operation on Embedded Device

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.757-770
    • /
    • 2020
  • We propose a hand gesture recognition method that is compatible with a head-up display (HUD) including small processing resource. For fast link adaptation with HUD, it is necessary to rapidly process gesture recognition and send the minimum amount of driver hand gesture data from the wearable device. Therefore, we use a method that recognizes each hand gesture with an inertial measurement unit (IMU) sensor based on revised correlation matching. The method of gesture recognition is executed by calculating the correlation between every axis of the acquired data set. By classifying pre-defined gesture values and actions, the proposed method enables rapid recognition. Furthermore, we evaluate the performance of the algorithm, which can be implanted within wearable bands, requiring a minimal process load. The experimental results evaluated the feasibility and effectiveness of our decomposed correlation matching method. Furthermore, we tested the proposed algorithm to confirm the effectiveness of the system using pre-defined gestures of specific motions with a wearable platform device. The experimental results validated the feasibility and effectiveness of the proposed hand gesture recognition system. Despite being based on a very simple concept, the proposed algorithm showed good performance in recognition accuracy.

Augmented Feature Point Initialization Method for Vision/Lidar Aided 6-DoF Bearing-Only Inertial SLAM

  • Yun, Sukchang;Lee, Byoungjin;Kim, Yeon-Jo;Lee, Young Jae;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1846-1856
    • /
    • 2016
  • This study proposes a novel feature point initialization method in order to improve the accuracy of feature point positions by fusing a vision sensor and a lidar. The initialization is a process that determines three dimensional positions of feature points through two dimensional image data, which has a direct influence on performance of a 6-DoF bearing-only SLAM. Prior to the initialization, an extrinsic calibration method which estimates rotational and translational relationships between a vision sensor and lidar using multiple calibration tools was employed, then the feature point initialization method based on the estimated extrinsic calibration parameters was presented. In this process, in order to improve performance of the accuracy of the initialized feature points, an iterative automatic scaling parameter tuning technique was presented. The validity of the proposed feature point initialization method was verified in a 6-DoF bearing-only SLAM framework through an indoor and outdoor tests that compare estimation performance with the previous initialization method.

INS/Multi-Vision Integrated Navigation System Based on Landmark (다수의 비전 센서와 INS를 활용한 랜드마크 기반의 통합 항법시스템)

  • Kim, Jong-Myeong;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.671-677
    • /
    • 2017
  • A new INS/Vision integrated navigation system by using multi-vision sensors is addressed in this paper. When the total number of landmark measured by the vision sensor is smaller than the allowable number, there is possibility that the navigation filter can diverge. To prevent this problem, multi-vision concept is applied to expend the field of view so that reliable number of landmarks are always guaranteed. In this work, the orientation of camera installed are 0, 120, and -120degree with respect to the body frame to improve the observability. Finally, the proposed technique is verified by using numerical simulation.