• Title/Summary/Keyword: Inertia compensation

Search Result 46, Processing Time 0.03 seconds

Speed Control of an Induction Motor using Acceleration Feedforward Compensation (가속도 전향보상을 이용한 유도전동기의 속도제어)

  • Kim, Sang-Hoon;Lee, Jae-Wang
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.175-182
    • /
    • 2000
  • In this paper, a novel speed control strategy using an acceleration feedforward compensation by the estimation of the system inertia is proposed. With the proposed method, the enhanced speed control performance can be achieved and the speed response against the disturbance torque can be improved for the vector-controller induction motor drive systems in which the bandwidth of the speed controller cannot be made large enough. The experimental results confirm the validity of the proposed strategy.

  • PDF

Inertia Estimation of Spacecraft Based on Modified Law of Conservation of Angular Momentum

  • Kim, Dong-Hoon;Choi, Dae-Gyun;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.353-357
    • /
    • 2010
  • In general, the information of inertia properties is required to control a spacecraft. The inertia properties are changed by some activities such as consumption of propellant, deployment of solar panel, sloshing, etc. Extensive estimation methods have been investigated to obtain the precise inertia properties. The gyro-based attitude data including noise and bias needs to be compensated for improvement of attitude control accuracy. A modified estimation method based on the law of conservation of angular momentum is suggested to avoid inconvenience like filtering process for noise-effect compensation. The conventional method is modified and beforehand estimated moment of inertia is applied to improve estimation efficiency of product of inertia. The performance of the suggested method has been verified for the case of STSAT-3, Korea Science Technology Satellite.

Design and Development of Large Electric Curtain Control System for Time Controlled (대형전동커튼 타임제어 시스템 설계 및 개발)

  • Cheng, Shuo;Chung, Yong Taek;Piao, Xiang Fan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • The purpose of this paper is to design a curtain control system for centralized management of large curtains, which includes curtain structure, electric curtain controller, communication system, user interface and remote control. Curtain structure is designed to avoid using limit switch. The system is based on microprocessor, determined the stop position and complete running time of electric curtain through time control, and achieved remote control of curtain opening and closing through wired and wireless communication modes. By establishment of a mathematical model to calculate the inertia compensation time of the electric curtain, the electric curtain can be stopped ahead of time, and the curtain can be completely closed by the inertia. The result of test experiment of 32 electric curtain controllers shows the communication success rate reached 100%.

Sensorless IPMSM Control Based on an Extended Nonlinear Observer with Rotational Inertia Adjustment and Equivalent Flux Error Compensation

  • Mao, Yongle;Yang, Jiaqiang;Yin, Dejun;Chen, Yangsheng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2150-2161
    • /
    • 2016
  • Mechanical and electrical parameter uncertainties cause dynamic and static estimation errors of the rotor speed and position, resulting in performance deterioration of sensorless control systems. This paper applies an extended nonlinear observer to interior permanent magnet synchronous motors (IPMSM) for the simultaneous estimation of the rotor speed and position. Two compensation methods are proposed to improve the observer performance against parameter uncertainties: an on-line rotational inertia adjustment approach that employs the gradient descent algorithm to suppress dynamic estimation errors, and an equivalent flux error compensation approach to eliminate static estimation errors caused by inaccurate electrical parameters. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

Analysis and Specifications of Switching Frequency in Parallel Active Power Filters Regarding Compensation Characteristics

  • Guopeng, Zhao;Jinjun, Liu
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.749-761
    • /
    • 2010
  • The switching frequency of a power device is a very important parameter in the design of a parallel active power filter (PAPF), but so far, very little discussion has been conducted on it in a quantitative manner in previous publications. In this paper, an extensive analysis on the effects of the switching frequency on the performance of a PAPF is made, and a specification of the switching frequency values with different compensation results is presented. A first-order inertia element and a second-order oscillation element are considered as approximate models of a PAPF, respectively. The compensation characteristic for each order of harmonic current is obtained at different switching frequencies. Then, the THDs of each model for the system loads of a rectifier with resistance and inductance loads are proposed. The compensation results of a PAPF controlled as a first-order inertia element are better than those of a PAPF controlled as a second-order oscillation element. With two types of system loads which are rectifier with resistance and inductance loads and rectifier with resistance, inductance and capacitance loads, the THDs of the source current after compensation are presented with different switching frequencies. The compensation characteristics for the most widely used digital control system are investigated. The situation with an analog control is the theoretical characteristic and it is the best situation. The compensation characteristic of the digital control is worse than the compensation characteristic of the theoretical characteristic. Based on these analyses, the specifications of compensation characteristics with different switching frequencies are quite straightforward. Finally, a practical design example is studied to verify the application.

Fuzzy PI Speed Controller of Induction Motor Compensation the Variation of Load Inertia (부하관성모멘트 변화를 보상한 유도전동기의 퍼지 PI 속도제어)

  • Cho, Soon-Bong;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.233-243
    • /
    • 1994
  • Generally, fuzzy PI controller that regulates the gains using fuzzy algorithm shows high performance in speed response. However, it has some problems to the load inertia variation, because the change of speed error(CE) is in a fixed range. As load inertia increases, CE is decreased and the usuage of fuzzy table is limited. Therefore, the output of the fuzzy controller has a limited range. This paper proposes an improved fuzzy PI controller. To reduce the speed overshoot, we adapt a control method that selects a proper CE range with respect to the load inertia variation. The proposed controller is applied to the vector controlled system with 2.2kW induction motor. Some simulation and experimental results are exhibited. With these results, we can easily find that proposed PI controller is more robust than the conventional fuzzy PI controller against the load inertia variation.

A Study Compensation Method for Dynamic Characteristics in Electro-Hydraulic Servosystem Equipping Load Pressure Feedback Compensator (부하압력 피이드백 보상기를 장착한 전기-유압서보계의 동특성 개선에 관한 연구)

  • Kim, Jong-Kyum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.126-136
    • /
    • 1992
  • In this paper, a simple structured feedback compensation scheme for a electro-hydraulic servo system to keep the response characteristics unchanged regardless of the load variation is proposed. In electro-hydraulic servo system, servovalve is most important control element. But the relation between input corrent and output flowrate of the servovalve has properties as follows; firstly, in spite of constant input current, output flowrate decreases as load pressure increases, secondly, according to frequency response of typical servovalve, the characteristics of gain and phase shift is something like 2'nd order system. Load pressure feedback compensation method has been applied to eliminate the first influence, the second influence has been improved by phase lead compensation method. As a result of above compensation methods, regardless of variation load condition, spring and inertia load, the compensation scheme has been verified to be effective within the range of frequency less than 25Hz by static response and dynamic response in time domain and frequency domain through experiments.

  • PDF

Integrated Engine-CVT Control Considering Powertrain Response Lag in Acceleration

  • Kim, Tal-Chol;Kim, Hyun-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.764-772
    • /
    • 2000
  • In this paper, an engine-CVT integrated control algorithm is suggested by considering the inertia torque and the CVT ratio change response lag in acceleration. In order to compensate for drive torque time delay due to CVT response lag, two algorithms are presented: (1) an optimal engine torque compensation algorithm, and (2) an optimal engine speed compensation algorithm. Simulation results show that the optimal engine speed compensation algorithm gives better engine operation around the optimal operation point compared to the optimal torque compensation while showing nearly the same acceleration response. The performance of the proposed engine-CVT integrated control algorithms are compared with those of conventional CVT control, and It is found that optimal engine operation can be achieved by using integrated control during acceleration, and improved fuel economy can be expected while also satisfying the driver's demands.

  • PDF