• Title/Summary/Keyword: Inertia Loads

Search Result 124, Processing Time 0.018 seconds

Dynamic Stability of Cylindrical Shells Subjected to Follower Forces (종동력을 받는 원통셸의 동적 안정성에 관한 연구)

  • 김현순;김지환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.336-345
    • /
    • 1998
  • The dynamic instability of cylindrical shell with clamped-free boundary condition subjected to constant follower force or $P_0 + P_1cos {\Omega}_t$ type pulsating follower force is analyzed. The motion of shell is modeled using the shell theory considering rotary inertia and shear deformation, and analyzed with finite element method. In case of constant follower force, the changes of eigenvalues dependent on the magnitude of applied load are investigated and the critical loads are obtained. In case pulsating follower force, instability regions of exicitation frequency are obtained by modal transform with right and left modal matrix and by multiple scales method. The effects of thickness ratio and aspect ratio on the instability of shell are studied.

  • PDF

A Study on the Structural Strength of the Rolling Stock Seat Frame (철도차량 시트프레임의 강도 평가 연구)

  • 구정서;조현직
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.130-138
    • /
    • 2004
  • In this paper, the structural strength of a rolling stock seat were numerically evaluated under several design load conditions based on the UIC requirements. The rot]ins stock seat was designed for the high speed train of a Chinese conventional line. To maximize its weight reduction and structural strength, an aluminium alloy, ALDC8-T5, was applied to the base frame, side frames and armrests. The designed seat frame satisfied the strength requirements on inertia loads and fatigue test conditions. However, it couldn't satisfy the requirements on the static test conditions of UIC 566 OR. Therefore, some design modifications were suggested and numerically evaluated whether the static test requirements could be satisfied or not.

Nonlinear Control of High Precision Pointing Stabilization Systems with Heavy Loads (대부하 정밀 표적지향 안정화 시스템의 비선형 제어기법 연구)

  • 이대옥;강태하;김학성;박광웅
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.157-178
    • /
    • 2001
  • In this paper, the nonlinear control of high precision pointing stabilization system using feedback-linearization design methodology based on system parameter identification is discussed. Modern nonlinear servomechanism theory is adapted to cope with the hard nonlinearities inherent in the turret system. The mathematical models of electrical turret driving system to develop a high performance control algorithm are derived, and the parameter estimation algorithm identifying the unknown system parameters such as vicious and coulomb frictions, stiffness and inertia is developed. Through computer simulation and experiments, it is shown that pointing and tracking accuracy and stabilization against the wideband stochastic disturbance induced by vehicle running on the bump course are improved. Therefore, it is considered the proposed nonlinear control technique is effective in counteracting the nonlinearities and disturbances.

  • PDF

Comparative dynamic studies of thick laminated composite shells based on higher-order theories

  • Ganapathi, M.;Patel, B.P.;Pawargi, D.S.;Patel, H.G.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.695-711
    • /
    • 2002
  • Here, the dynamic response characteristics of thick cross-ply laminated composite cylindrical shells are studied using a higher-order displacement model. The formulation accounts for the nonlinear variation of the in-plane and transverse displacements through the thickness, and abrupt discontinuity in slope of the in-plane displacements at any interface. The effect of inplane and rotary inertia terms is included. The analysis is carried out using finite element approach. The influences of various terms in the higher-order displacement field on the free vibrations, and transient dynamic response characteristics of cylindrical composite shells subjected to thermal and mechanical loads are analyzed.

A Stable Composite Controller Design for Flexible Joint Robot Manipulators (탄성관절을 갖는 로봇 매니퓰레이터의 안정한 합성제어기 설계)

  • 이만형;백운보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.385-392
    • /
    • 1993
  • This paper presents a new stable composite control law for the flexible joint robot manipulators, which incorporate an additional stabilizing control law with the sliding property. The singularly perturbated models in this paper include inertia moments which are functions or the deformations of actuators as well as link positions. The values of renewedly defined fast controller variables are computer from the corrected reduced-order model without additional computational loads. Proposed schemes are compared with the conventional one. The simulations for 2 DOF flexible joint manipulator show that the proposed schemes are more stable than the conventional scheme, and especially effective for the manipulator with high joint-flexibilities.

Determination of Dynamic Fractrue Toughness for very Brittle Materials (매우 취성인 재료의 동적 파괴인성치 결정법)

  • 이억섭;한유상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.724-728
    • /
    • 1996
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughness for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracture toughness for very brittle materials because of the small crack initiation load. To evaluate the dynamic fracture toughness of verybrittle materials, it is necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has small Young's modulus, is used for the instrumented Charpyimpact test and a proper testing method is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initation of the very brittle materials.

  • PDF

A Parametric Study on the Shear-deformation Effect for Beck's Column under Follower Force (비보존력을 받는 Beck 기둥의 전단변형효과에 관한 매개변수적 고찰)

  • Lee Jun-Seok;Kim Nam-Il;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.985-991
    • /
    • 2006
  • For a shear-deformable beam-column element subjected to non-conservative forces. equations of motion and a finite element formulation are presented applying extended Hamilton's principle. The influence of non-conservative force's direction parameter. internal and external damping forces, and shear deformation and rotary inertia effects on divergence and flutter loads of Beck's columns are intensively investigated based on element stiffness. damping and mass matrixes derived for the non-conservative system.

  • PDF

An Improved Structural Analysis Method for Ocean Transportation of Marine Structures (해양구조물의 해상 운동을 위한 개선된 구조 해석에 관한 연구)

  • Cho, Kyu-Nam;Kim, Dae-Yeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.48-58
    • /
    • 1990
  • 본 논문은 해양구조물 중 특히 자켓이 부선에 설치되어 운송되는 시스템에 대한 개선된 해상 운송 해석에 대한 고찰이다. 해석 방법의 개선은 파력에 의해 발생되는 부선 운동에 따른 관성력의 추계적 처리에 기본을 두어 얻어지고 있다. 이 방법은 소위 말하는 강체 부선 방법과 연체 부선 방법의 중간적이라고 할 수 있으며, 두가지 방법의 단점을 보완하였다. 전형적인 자켓-부선 시스템에 대하여 유한요소법을 이용하여 모델링한 후 본 해석 방법을 적용하여 해상운송 해석을 수행하였으며, 자켓-부선간 반력을 구하여 기존의 방법과 비교 검토하였다. 본 방법은 현실적이고 효과적임이 증명되었다.

  • PDF

Effect of stiffeners on failure analyses of optimally designed perforated steel beams

  • Erdal, Ferhat
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.183-201
    • /
    • 2016
  • Perforated steel beams can be optimised by increased beam depth and the moment of inertia combined with a reduced web thickness, favouring the use of original I-section beams. The designers are often confronted with situations where optimisation cannot be carried out effectively, taking account of the buckling risk at web posts, moment-shear transfers and local plastic deformations on the transverse holes of the openings. The purpose of this study is to suggest solutions for reducing these failure risks of tested optimal designed beams under applying loads in a self-reacting frame. The design method for the beams is the hunting search optimisation technique, and the design constraints are implemented from BS 5950 provisions. Therefore, I have aimed to explore the strengthening effects of reinforced openings with ring stiffeners, welded vertical simple plates on the web posts and horizontal plates around the openings on the ultimate load carrying capacities of optimally designed perforated steel beams. Test results have shown that compared to lateral stiffeners, ring and vertical stiffeners significantly increase the loadcarrying capacity of perforated steel beams.

The equivalent second moment of area for the symmetrically tapered compression member (대칭형으로 taper진 압축재의 등가 단면2차모멘트)

  • 김상조;민영숙;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.291-298
    • /
    • 2001
  • When the compression members have the variable cross sections along their member axes, the determination of the elastic critical loads by classical methods becomes impossible and if possible involves complicated calculation only to obtain the approximate values of critical load. In this paper the elastic critical load coefficients of the tapered members with simply supported ends were determined by finite element method. And then the results were represented by simple algebraic equations of two parameters, a( =taper parameter) and m ( = sectional property parameter). One the basis of algebraic equations, the equivalent moment of inertia concept originally proposed by Bleich for a spesific case, are extended to the general cases.

  • PDF