• Title/Summary/Keyword: Inequality Constraint

Search Result 77, Processing Time 0.022 seconds

Hop-constrained multicast route packing with bandwidth reservation

  • Gang Jang Ha;Park Seong Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.402-408
    • /
    • 2002
  • Multicast technology allows the transmission of data from one source node to a selected group of destination nodes. Multicast routes typically use trees, called multicast routing trees, to minimize resource usage such as cost and bandwidth by sharing links. Moreover, the quality of service (QoS) is satisfied by distributing data along a path haying no more than a given number of arcs between the root node of a session and a terminal node of it in the routing tree. Thus, a multicast routing tree for a session can be represented as a hop constrained Steiner tree. In this paper, we consider the hop-constrained multicast route packing problem with bandwidth reservation. Given a set of multicast sessions, each of which has a hop limit constraint and a required bandwidth, the problem is to determine a set of multicast routing trees in an arc-capacitated network to minimize cost. We propose an integer programming formulation of the problem and an algorithm to solve it. An efficient column generation technique to solve the linear programming relaxation is proposed, and a modified cover inequality is used to strengthen the integer programming formulation.

  • PDF

Robust Tracking Controller Design for TS Fuzzy System with Uncertaintie (불확실한 TS 퍼지 시스템을 위한 강인한 추종 제어기의 설계)

  • Jeon, Sang-Won;Lee, Sang-Jun;Lee, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1955-1957
    • /
    • 2001
  • This paper propose the design method of robust tracking controller for nonlinear TS fuzzy system with uncertainties. The robust tracking controller design is presented by constraint of robust stability for nonlinear system. A sufficient condition of the robust stability is presented by LMI(Linear Matrix Inequality) soltuion in the sense of Lyapunov for TS fuzzy system with uncertainties. The effectiveness of the proposed robust tracking con design is demonstrated through a numerical simulatio.

  • PDF

A Study on the Profile Modification of Spur Gears for the Prevention of Gear Tooth Overlap by Deformation (평기어 치의 변형 후 치간섭 방지를 위한 치형 수정에 관한 연구)

  • Huh, Gyoung-Jae;Park, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.208-214
    • /
    • 1999
  • The purpose of this paper is to develop a profile modification technique of spur gears and its computer program for the prevention of gear tooth overlap. In the gear system, tooth overlap produces an impact at the initial contact of some tooth pairs. In this analysis, contact surface was assumed to be unbonded and frictionless under small deformation and stain. The problem is formulated by a variational statement with inequality constraint. Tooth load sharing is obtained by the application of contact theory, and overlap is known by the analysis of deformation. After carrying out the profile modification of gear tooth, we verified the reasonable results.

  • PDF

Dynamic Manipulability for Cooperating Multiple Robot Systems with Frictional Contacts (접촉 마찰을 고려한 다중 로봇 시스템의 조작도 해석)

  • Byun Jae-Min;Lee Ji-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.10-18
    • /
    • 2006
  • We propose a new approach to compute possible acceleration boundary, so is called dynamic manipulability, for multiple robotic systems with frictional contacts between robot end-effectors and object. As the frictional contact condition which requires each contact force to lie within a friction cone is based on the nonlinear inequality formalism is not easy to handle the constraint in manipulability analysis. To include the frictional contact condition into the conventional manipulability analysis we approximate the friction cone to a pyramid which is described by linear inequality constraints. And then achievable acceleration boundaries of manipulated object are calculated conventional linear programming technique under constraints for torque capability of each robot and the approximated contact condition. With the proposed method we find some solution to which conventional approaches did not reach. Also, case studies are Presented to illustrate the correctness of the proposed approach for two robot systems of simple planar robots and PUMA560 robots.

Optimal Fuzzy Filter for Nonlinear Systems with Variance Constraints (분산 제약을 갖는 비선형 시스템의 최적 퍼지 필터)

  • Noh, Sun-Young;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.549-554
    • /
    • 2012
  • In this paper, we consider the optimal fuzzy filter of nonlinear discrete-time with estimation error variance constraint. First, the Takagi and Sugeno(T-S) fuzzy model is employed to approximate the nonlinear system. Next, the error state is mean square bounded, and the steady state variance of the estimation error of each state is not more than the individual predefined value. It is shown that, the addressed problem can be carried out by solving linear matrix inequality(LMI) and some algebraic quadratic matrix inequalities. Finally, some examples are provided to illustrate the design procedure and expected performance through simulations.

A Study on the Robust Stability and Stabilization Problem for Marine Vessel (수상 및 수중 운동체의 강인 안정성 해석 및 안정화에 관한 연구)

  • Kim, Young-Bok;Cho, Kwang-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.379-385
    • /
    • 2012
  • In this paper, the stability and stabilization problems for marine vessels including surface and underwater vehicles are described. In the marine vessels, there are many and strong nonlinear parameters. These give hard design process and difficulties to us. In this article, at first we make a descriptor system representation as a controlled system to preserve the physical parameters of the system as it is. And we propose a new stability and stabilizability conditions based on the quadratic stabilization approach which gives a solution for the unreasonable problems produced by added mass. That is, the proposed conditions are not interfered with the nonsymmetric matrix constraint. And the stability condition is given by an matrix inequality such that it makes us to obtain a solution easily for something.

A Hierarchical Expert System for Process Planning and Material Selection (공정계획과 재료선정의 동시적 해결을 위한 계층구조 전문가시스템)

  • 권순범;이영봉;이재규
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.2
    • /
    • pp.29-40
    • /
    • 2000
  • Process planning (selection and ordering of processes) and material selection for product manufacturing are two key things determined before taking full-scale manufacturing. Knowledge on product design. material characteristics, processes, time and cost all-together are mutually related and should be considered concurrently. Due to the complexity of problem, human experts have got only one of the feasilbe solutions with their field knowledge and experiences. We propose a hierarchical expert system framework of knowledge representation and reasoning in order to overcome the complexity. Manufacturing processes have inherently hierarchical relationships, from top level processes to bottom level operation processes. Process plan of one level is posted in process blackboard and used for lower level process planning. Process information on blackboard is also used to adjust the process plan in order to resolve the dead-end or inconsistency situation during reasoning. Decision variables for process, material, tool, time and cost are represented as object frames, and their relationships are represented as constraints and rules. Constraints are for relationship among variables such as compatibility, numerical inequality etc. Rules are for causal relationships among variables to reflect human expert\`s knowledge such as process precedence. CRSP(Constraint and Rule Satisfaction Problem) approach is adopted in order to obtain solution to satisfy both constraints and rules. The trade-off procedure gives user chances to see the impact of change of important variables such as material, cost, time and helps to determine the preferred solution. We developed the prototype system using visual C++ MFC, UNIK, and UNlK-CRSP on PC.

  • PDF

Suboptimal Robust Generalized H2 Filtering using Linear Matrix Inequalities

  • Ra, Won-Sang;Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.134-140
    • /
    • 1999
  • The robust generalized H2 filtering problem for a class of discrete time uncertain linear systems satisfying the sum quadratic constraints(SQCs) is considered. The objective of this paper is to develop robust stability condition using SQCs and design a robust generalized Ha filter to take place of the existing robust Kalman filter. The robust generalized H2 filter is designed based on newly derived robust stability condition. The robust generalized Ha filter bounds the energy to peak gain from the energy bounded exogenous disturbances to the estimation errors under the given positive scalar ${\gamma}$. Unlike the robust Lalman filter, it does not require any spectral assumptions about the exogenous disturbances . Therefore the robust generalized H2 filter can be considered as a deterministic formulation of the robust Kalman filter. Moreover, the variance of the estimation error obtained by the proposed filter is lower than that by the existing robust Kalman filter. The robustness of the robust generalized H2 filter against the uncertainty and the exogenous signal is illustrated by a simple numerical example.

  • PDF

Damage detection of mono-coupled multistory buildings: Numerical and experimental investigations

  • Xu, Y.L.;Zhu, Hongping;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.709-729
    • /
    • 2004
  • This paper presents numerical and experimental investigations on damage detection of mono-coupled multistory buildings using natural frequency as only diagnostic parameter. Frequency equation of a mono-coupled multistory building is first derived using the transfer matrix method. Closed-form sensitivity equation is established to relate the relative change in the stiffness of each story to the relative changes in the natural frequencies of the building. Damage detection is then performed using the sensitivity equation with its special features and minimizing the norm of an objective function with an inequality constraint. Numerical and experimental investigations are finally conducted on a mono-coupled 3-story building model as an application of the proposed algorithm, in which the influence of modeling error on the degree of accuracy of damage detection is discussed. A mono-coupled 10-story building is further used to examine the capability of the proposed algorithm against measurement noise and incomplete measured natural frequencies. The results obtained demonstrate that changes in story stiffness can be satisfactorily detected, located, and quantified if all sensitive natural frequencies to damaged stories are available. The proposed damage detection algorithm is not sensitive to measurement noise and modeling error.

A New Design Method for T-S Fuzzy Controller with Pole Placement Constraints

  • Joh, Joongseon;Jeung, Eun-Tae;Chung, Won-Jee;Kwon, Sung-Ha
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.72-80
    • /
    • 1997
  • A new design method for Takagi-Sugeno (T-S in short) fuzzy controller which guarantees global asymptotic stability and satisfies a desired performance is proposed in this paper. The method uses LMI(Linear Matrix Inequality) approach to find the common symmetric positive definite matrix P and feedback fains K/sub i/, i= 1, 2,..., r, numerically. The LMIs for stability criterion which treats P and K'/sub i/s as matrix variables is derived from Wang et al.'s stability criterion. Wang et al.'s stability criterion is nonlinear MIs since P and K'/sub i/s are coupled together. The desired performance is represented as $ LMIs which place the closed-loop poles of $ local subsystems within the desired region in s-plane. By solving the stability LMIs and pole placement constraint LMIs simultaneously, the feedback gains K'/sub i/s which gurarntee global asymptotic stability and satisfy the desired performance are determined. The design method is verified by designing a T-S fuzzy controller for an inverted pendulum with a cart using the proposed method.

  • PDF