• Title/Summary/Keyword: Inelastic time history analysis

Search Result 124, Processing Time 0.027 seconds

Component fragility assessment of a long, curved multi-frame bridge: Uniform excitation versus spatially correlated ground motions

  • Jeon, Jong-Su;Shafieezadeh, Abdollah;DesRoches, Reginald
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.633-644
    • /
    • 2018
  • This paper presents the results of an assessment of the seismic fragility of a long, curved multi-frame bridge under multi-support earthquake excitations. To achieve this aim, the numerical model of columns retrofitted with elliptical steel jackets was developed and validated using existing experimental results. A detailed nonlinear numerical model of the bridge that can capture the inelastic response of various components was then created. Using nonlinear time-history analyses for a set of stochastically generated spatially variable ground motions, component demands were derived and then convolved with new capacity-based limit state models to obtain seismic fragility curves. The comparison of failure probabilities obtained from uniform and multi-support excitation analyses revealed that the consideration of spatial variability significantly reduced the median value of fragility curves for most components except for the abutments. This observation indicates that the assumption of uniform motions may considerably underestimate seismic demands. Moreover, the spatial correlation of ground motions resulted in reduced dispersion of demand models that consequently decreased the dispersion of fragility curves for all components. Therefore, the spatial variability of ground motions needs to be considered for reliable assessment of the seismic performance of long multi-frame bridge structures.

Seismic Retrofit of Asymmetric.Elasto-Plastic Structure Using Viscous Dampers (점성감쇠기를 이용한 비대칭.비탄성구조물의 내진보강)

  • 김진구;방성혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.87-93
    • /
    • 2002
  • A procedure for figuring out proper amount of additional viscous damping required to keep the inelastic deformation of a plan-wise asymmetric structure within a given target performance point was developed. To this end the behavior of an asymmetric nonlinear structure after yielding is investigated. Then a formula for the required amount of equivalent damping was derived based on the ductility demand of the structure. The procedure was applied to a five-story asymmetric structure subjected to an earthquake load. According to the comparison with the results from the dynamic time-history analysis, the structure with viscous dampers installed in accordance with the proposed procedure showed satisfactory seismic performance in both the stiff and the flexible edges.

Towards achieving the desired seismic performance for hybrid coupled structural walls

  • Hung, Chung-Chan;Lu, Wei-Ting
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1251-1272
    • /
    • 2015
  • It is widely recognized that the preferred yielding mechanism for a hybrid coupled wall structure is that all coupling beams over the height of the structure yield in shear prior to formation of plastic hinges in structural walls. The objective of the study is to provide feasible approaches that are able to promote the preferred seismic performance of hybrid coupled walls. A new design methodology is suggested for this purpose. The coupling ratio, which represents the contribution of coupling beams to the resistance of system overturning moment, is employed as a fundamental design parameter. A series of nonlinear time history analyses on various representative hybrid coupled walls are carried out to examine the adequacy of the design methodology. While the proposed design method is shown to be able to facilitate the desired yielding mechanism in hybrid coupled walls, it is also able to reduce the adverse effects caused by the current design guidelines on the structural design and performance. Furthermore, the analysis results reveal that the state-of-the-art coupled wall design guidelines could produce a coupled wall structure failing to adequately exhaust the energy dissipation capacity of coupling beams before walls yield.

Seismic Behavior and Recentering Capability Evaluation of Concentrically Braced Frame Structures using Superelastic Shape Alloy Active Control Bracing System (초탄성 형상기억합금 능동제어 가새시스템을 이용한 중심가새프레임 구조물의 지진거동 및 복원성능 평가)

  • Hu, Jong Wan;Rhee, Doo Jae;Joe, Yang Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.1-12
    • /
    • 2012
  • The researches related to active control systems utilizing superelastic shape memory alloys (SMA) have been recently conducted to reduce critical damage due to lateral deformation after severe earthquakes. Although Superelastic SMAs undergo considerable inelastic deformation, they can return to original conditions without heat treatment only after stress removal. We can expect the mitigation of residual deformation owing to inherent recentering characteristics when these smart materials are installed at the part where large deformation is likely to occur. Therefore, the primary purpose of this research is to develop concentrically braced frames (CBFs) with superelastic SMA bracing systems and to evaluate the seismic performance of such frame structures. In order to investigate the inter-story drift response of CBF structures, 3- and 6-story buildings were design according to current design specifications, and then nonlinear time-history analyses were performed on numerical 2D frame models. Based on the numerical analysis results, it can be comparatively verified that the CBFs with superelastic SMA bracing systems have more structural advantages in terms of energy dissipation and recentering behavior than those with conventional steel bracing systems.

Mechanics based force-deformation curve of steel beam to column moment joints

  • Kasar, Arnav A.;Bharti, S.D.;Shrimali, M.K.;Goswami, Rupen
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.19-34
    • /
    • 2017
  • The widespread damage to steel Moment Resisting Frames (MRFs) in past major earthquakes have underscored the need to understand the nonlinear inelastic behaviour of such systems. To assess the seismic performance of steel MRF, it is essential to model the nonlinear force-deformation behaviour of beam to column joints. To determine the extent of inelasticity in a beam to column joint, nonlinear finite element analysis is generally carried out, which is computationally involved and demanding. In order to obviate the need of such elaborate analyses, a simplistic method to predict the force-deformation behaviour is required. In this study, a simple, mechanics driven, hand calculation method is proposed to obtain the forcedeformation behaviour of strong axis beam to column moment joints. The force-deformation behaviour for twenty-five interior and exterior beam to column joints, having column to beam strength ratios ranging from 1.2 to 10.99 and 2.4 to 22, respectively, have been obtained. The force-deformation behaviour predicted using the proposed method is compared with the results of finite element analyses. The results show that the proposed method predicts the force-deformation behaviour fairly accurately, with much lesser computational effort. Further the proposed method has been used to conduct Nonlinear Dynamic Time History Analyses of two benchmark frames; close correspondence of results obtained with published results establishes the usefulness and computational accuracy of the method.

Seismic Performance Evaluation of a School Gymnasium Using Static Anlysis (정적해석에 의한 학교 체육관의 내진 성능 평가)

  • Morooka, Shigehiro;Tsuda, Seita;Ohsaki, Makoto
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.49-59
    • /
    • 2009
  • The seismic responses of small-scale spatial frames such as school gymnasiums are usually evaluated using static analysis, although time-history analysis should be carried out to fully incorporate the dynamic responses of the structures against seismic motions. In this study, advanced static analysis procedures arc presented for school gymnasiums that will improve the performance evaluation against seismic motions. The seismic loads are approximated by equivalent static loads corresponding to the two performance levels; i.e., Levels 1 and 2 defined by the Japanese building standard. The importance of utilizing the eigenmode in the load pattern is discussed. Simple static analysis procedures are presented for evaluation of maximum vertical acceleration. It is shown that the static analysis for Level 2 input significantly underestimates the responses by dynamic analysis; however, the inelastic responses for Level 2 are shown to be successfully evaluated using the equivalent linearization that is similar to the $^{\circ}$Dmethod based on calculation of limit strength$^{\circ}{\pm}$ for building frames in Japan.

  • PDF

Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures (확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석)

  • Jin, He-Shou;Song, Jong-Keol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.269-272
    • /
    • 2008
  • The seismic fragility curves of a structure represents the probability of exceeding the prescribed structural damage given various levels of ground motion intensityand the seismic fragility curve is essential to evaluation of structural performance and assessment of risk and loss of structures. The purpose of this paper is to develop seismic fragility functions for bridge structures in Koreaby reviewing those of advanced countries. Therefore, at first, we investigated development conditions of the seismic fragility functions. And the next highway bridges in Korea are classified into a number of categories and several typical bridges are selected to estimate seismic fragilities for using this analysis method in Korea. Finally, fragility curves for PSC Box girder bridge are estimated. The results show that the bridge classification and damage state play an important role in estimation of seismic damage and seismic fragility analysis for bridge structures.

  • PDF

Ship Collision Analysis of Structures (구조물의 선박충돌 해석)

  • Lee, Seong-Lo;Bae, Yong-Gwi;Lee, Gye-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.87-96
    • /
    • 2006
  • A ship collision analysis by finite element method is performed considering the effects of mass and speed of ship and material and shape of structures to analyze the dynamic characteristics by ship collision. From this analysis, collision load-time history and damage of ship and structures are obtained. In this study, results of finite element analysis are compared with previous studies in USA, Japan and some countries of Europe. Dynamic characteristics are different from each other according to interaction between ship and structures. It seems that there are lots of factor to have effects on the ship-structures interaction. Because little information is available on the behavior of the inelastic deformation of materials and structures during the type of dynamic impacts associated with vessel impact, assumptions based on experience and sound engineering practice should be substituted. Therefore more researches on the interaction between ship and structures are required.

Nonlinear Static Analysis for Seismic Performance Evaluation of Multi-Span Bridges Considering Effect of Equivalent SDOF Methods (등가단자유도 방법의 영향을 고려한 다경간 교량의 내진성능 평가를 위한 비탄성 정적해석)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.473-484
    • /
    • 2006
  • The capacity spectrum method (CSM) can be used to simply estimate the maximum displacement response of the nonlinear structures. To evaluate seismic performance of multi-span bridges using the CSM, the representative response for structural system should be derived from the multi-degree-of-freedom (MDOF) responses by using the equivalent single-degree-of-freedom (ESDOF) method. The ESDOF method is used to calculate the capacity curve of the structural system from the pushover curves of all piers or structural members estimated by the pushover analysis. In order to evaluate an accuracy of ESDOF methods used in the CSM, the maximum displacements estimated by the CSM incorporating the several ESDOF methods are compared to those by the inelastic time-history analysis for several artificial earthquakes corresponding to the design spectrum.

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.