• Title/Summary/Keyword: Inelastic analysis

Search Result 745, Processing Time 0.03 seconds

Nonlinear Analysis of Precast Large Panel Structures Considering the Inelastic Properties of Horizontal Joints (수평접합부의 비탄성 특성을 고려한 프리캐스트 대형판넬 구조물의 비선형 해석에 관한 연구)

  • 정일영;최완철;송진규;강해관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.45-52
    • /
    • 1995
  • The stability and integrity of precast large panel structures are analyzed with nonlinear mathematical model considering the inelastic properties of horizontal joints. In this research, an analysis for cyclic loading test was carried out by the macro model that idealized the horizontal joints as inelastic-nonlinear spring systems. As a results, the strain hardening ratio of shear slip element was estimated as about 0.05%- 0.2% of initial shear stiffness. And under lateral load, the rocking motion due ti overturning moment was dominant rather than shear slip motion in the behavior of precast structures.

  • PDF

Neural networks for inelastic mid-span deflections in continuous composite beams

  • Pendharkar, Umesh;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.165-179
    • /
    • 2010
  • Maximum deflection in a beam is a design criteria and occurs generally at or close to the mid-span. Neural networks have been developed for the continuous composite beams to predict the inelastic mid-span deflections (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage, in concrete) from the elastic moments and elastic mid-span deflections (neglecting instantaneous cracking and time effects). The training and testing data for the neural networks is generated using a hybrid analytical-numerical procedure of analysis. The neural networks have been validated for four example beams and the errors are shown to be small. This methodology, of using networks enables a rapid estimation of inelastic mid-span deflections and requires a computational effort almost equal to that required for the simple elastic analysis. The neural networks can be extended for the composite building frames that would result in huge saving in computational time.

Analytical Study on Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.178-181
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

  • PDF

Analytical Study on the Size Effect Influencing Inelastic Behavior of ]Reinforced Concrete Bridge Piers Subjected to Cyclic Lead (반복하중을 받는 철근콘크리트 교각의 비탄성 거동에 미치는 크기효과에 관한 해석적 연구)

  • 김태훈;신현목
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.131-138
    • /
    • 2001
  • The purpose of this study is to investigate size effect on inelastic behavior of reinf bridge piers subjected to cyclic load. A computer program, named RCAHEST(Reinforced Co Analysis in Higher Evaluation System Technologr), for the analysis of reinforced concret was used. Material nonlinearity is taken into account by comprising tensile, compressiv models of cracked concrete and a model of reinforcing steel The smeared crack app incorporated. In boundary plane at which each member with different thickness is conne discontinuous deformation due to the abrupt change in their stiffness can be taken into introducing interface element. The effect of number of load reversals with the same d amplitude has been also taken into account to model the reinforcing steel. To determine th on bridge pier inelastic behavior, a 1/4-scale replicate model was also loaded for compar full-scale bridge pier behavior.

  • PDF

Evaluation of Inelastic Earthquake Response of MDOF System by Equivalent SDOF System (등가 1자유도계에 의한 다자유도 비선형 지진응답 산정)

  • Kim, Bu-Sik;Noh, Phil-Sung;Jun, Dae-Han;Song, Ho-San
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.2 s.4
    • /
    • pp.45-49
    • /
    • 2002
  • Current seismic design codes for building structures are based on the methods which can provide enough capacity to satisfy objected performance level and exactly evaluate the seismic performance of buildings. This paper is to suggest the method of inference of inelastic earthquake response obtained from MDOF system by equivalent SDOF system, and to prove the validity. The analysis results form simple model shows a good application possibility.

  • PDF

Inelastic Buckling Analysis of Semi-rigid Frames with Shear Deformations by Haringx's Theories (Haringx의 전단변형 이론을 고려한 부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.64-71
    • /
    • 2014
  • The generalized tangential stiffness matrix of semi-rigid frame element with shear deformations based on Haringx's shear theory is newly derived and compared with the previous study based on Engesser's shear theory. Also, linearized elastic and geometric stiffness matrices are newly presented from the exact tangential stiffness matrix. In oder to obtain the inelastic system buckling load of shear flexible semi-rigid frame structure, the Ef method by tangential modulus theory is adopted and the FE analysis programs are developed. Finally, the shear and semi-rigid effects of system bucking are investigated by two numerical examples.

Effect of PSD Function on Linear Response and Inelastic Response of Single Degree of Freedom System (단자유도 시스템의 선형응답과 비탄성응답에 미치는 PSD함수의 영향)

  • Choi, Dong-Ho;Lee, Sang-Hoon;Kim, Yong-Sik;Koh, Jung-Hoon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.257-259
    • /
    • 2008
  • Acceleration time history (ATH) used in the seismic analysis should envelop a target power spectral density (PSD) function in addition to the design response spectrum in order to have sufficient energy at each frequency for the purpose of ensuring adequate load. Even though design regulations require the ATH used in seismic analysis to meet a target PSD function, the reason that ATHs meet to a target PSD function is not described. Thus, artificial ATHs for high PSD function and artificial ATHs for low PSD function are generated. And then elastic and inelastic single-degree-of-freedom (SDOF) systems are loaded with these artificial time histories as the earthquake load. As a result, linear response and inelastic response of SDOF systems are affected by PSD function.

  • PDF

Seismic Performance Assessment of RC Bridge Columns using Inelastic Finite Element Analysis (비탄성 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Chung, Young-Soo;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.63-74
    • /
    • 2005
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridge columns using inelastic finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage index aims to provide a means of quantifying numerically the damage in reinforced concrete bridge columns sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge columns is verified by comparison with reliable experimental results.

A force-based element for direct analysis using stress-resultant plasticity model

  • Du, Zuo-Lei;Liu, Yao-Peng;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.175-186
    • /
    • 2018
  • The plastic hinge method and the plastic zone method are extensively adopted in displacement-based elements and force-based elements respectively for second-order inelastic analysis. The former enhances the computational efficiency with relatively less accurate results while the latter precisely predicts the structural behavior but generally requires more computer time. The displacement-based elements receive criticism mainly on plasticity dominated problems not only in accuracy but also in longer computer time to redistribute the forces due to formation of plastic hinges. The multi-element-per-member model relieves this problem to some extent but will induce a new problem in modeling of member initial imperfections required in design codes for direct analysis. On the contrary, a force-based element with several integration points is sufficient for material yielding. However, use of more integration points or elements associated with fiber section reduces computational efficiency. In this paper, a new force-based element equipped with stress-resultant plasticity model with minimal computational cost is proposed for second-order inelastic analysis. This element is able to take the member initial bowing into account such that one-element-per-member model is adequate and complied with the codified requirements of direct analysis. This innovative solution is new and practical for routine design. Finally, several examples demonstrate the validity and accuracy of the proposed method.

Seismic structural demands and inelastic deformation ratios: a theoretical approach

  • Chikh, Benazouz;Mebarki, Ahmed;Laouami, Nacer;Leblouba, Moussa;Mehani, Youcef;Hadid, Mohamed;Kibboua, Abderrahmane;Benouar, Djilali
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • To estimate the structural seismic demand, some methods are based on an equivalent linear system such as the Capacity Spectrum Method, the N2 method and the Equivalent Linearization method. Another category, widely investigated, is based on displacement correction such as the Displacement Coefficient Method and the Coefficient Method. Its basic concept consists in converting the elastic linear displacement of an equivalent Single Degree of Freedom system (SDOF) into a corresponding inelastic displacement. It relies on adequate modifying or reduction coefficient such as the inelastic deformation ratio which is usually developed for systems with known ductility factors ($C_{\mu}$) and ($C_R$) for known yield-strength reduction factor. The present paper proposes a rational approach which estimates this inelastic deformation ratio for SDOF bilinear systems by rigorous nonlinear analysis. It proposes a new inelastic deformation ratio which unifies and combines both $C_{\mu}$ and $C_R$ effects. It is defined by the ratio between the inelastic and elastic maximum lateral displacement demands. Three options are investigated in order to express the inelastic response spectra in terms of: ductility demand, yield strength reduction factor, and inelastic deformation ratio which depends on the period, the post-to-preyield stiffness ratio, the yield strength and the peak ground acceleration. This new inelastic deformation ratio ($C_{\eta}$) is describes the response spectra and is related to the capacity curve (pushover curve): normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), natural period (T), peak ductility factor (${\mu}$), and the yield strength reduction factor ($R_y$). For illustrative purposes, instantaneous ductility demand and yield strength reduction factor for a SDOF system subject to various recorded motions (El-Centro 1940 (N/S), Boumerdes: Algeria 2003). The method accuracy is investigated and compared to classical formulations, for various hysteretic models and values of the normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), and natural period (T). Though the ductility demand and yield strength reduction factor differ greatly for some given T and ${\eta}$ ranges, they remain take close when ${\eta}>1$, whereas they are equal to 1 for periods $T{\geq}1s$.