• Title/Summary/Keyword: Inelastic Behavior

Search Result 514, Processing Time 0.029 seconds

An Experimental Study on the Inelastic Behavior of the Reinforced Concrete Column Subject to Cyclic Lateral Loads (반복수평하중을 받는 철근콘크리트 기둥의 비탄성 거동에 관한 실험적 연구)

  • 정세환;정하선;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.45-50
    • /
    • 1991
  • This research has been carried out experimently to verify the structural efficiency of the reinforced concrete columns subjected to cyclic lateral loadings in the inelastic range. Sixteen specimens have been used in the tests, the factors such as reinforcing bars, shear-span ratio, axial load level and loading history being taken differently. The load-carrying capacities and the stiffness degradation in the inelastic range by cycle lateral load application have been counted by observing the load-deformation relationship, the crack initiation and propagation and the energy dissipation phenomena.

  • PDF

Crack development depending on bond design for masonry walls under shear

  • Ural, A.;Dogangun, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.257-266
    • /
    • 2012
  • Walls are the most important vertical load-carrying elements of masonry structures. Their bond designs are different from one country to another. This paper presents the shear effects of some structural bond designs commonly used for masonry walls. Six different bond designs are considered and modeled using finite element procedures under lateral loading to examine the shear behavior of masonry walls. To obtain accurate results, finite element models are assumed in the inelastic region. Crack development patterns for each wall are illustrated on deformed meshes, and the numerical results are compared.

An Experimental Study On the Inelastic Behavior of the High Strength Reinforced Concrete Column subject to Monotonic Loads (단조 하중을 받는 고강도 철근 콘크리트 기둥의 비탄성 거동에 관한 시험적 연구)

  • 정세환;정하선;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.53-58
    • /
    • 1992
  • This research is related to the experimental investigation of the inelastic behavior of R/C columns with high strength concrete. A total of eight specimens have been tested with different span ratios, steel reinforcements and load applications. Through tests bending moments were applied incrementally while axial forces being kept constantly at 80 tons. Careful observation were given to initial crack formation, crack patterns and propagation paths. Comparative studies have been made on the load carrying capacity for R/C columns with high strength concrete versus normal strength concrete.

  • PDF

An Experimental Study on the Inelastic Behavior of the Reinforced Concrete Column subject to Monotonic Loading (단조하중을 받는 철근콘크리트 기둥의 비탄성 거동에 관한 실험적 연구)

  • 정세환;정하선;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.69-72
    • /
    • 1990
  • This research is related to the experimental investigation of the inelastic behavior of reinforced concrete columns. A total of 12 specimens have been cast with different span ratios, steel reinforcements and load applications. Through the tests axial forces have been kept constantly at 40 tons while the bending moments were applied incremently and careful observations were given to the initial crack formation, crack pattern and propagation.

  • PDF

Inelastic Behavior and Design Strength of Panel Zones (패널 존의 비탄성거동과 설계강도)

  • Kim, Dong-Sung;Kim, Kee-Dong;Ko, Man-Gi
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.49-52
    • /
    • 2008
  • The design strength of panel zones, which was based on Krawinkler model, was investigated by comparing it with existing test and FEM results. The design strength overestimates of the strength of panel zones with thick column flange while it matches well with the strength of panel zones with thin column flange. More extensive studies are needed to develop a mathematical model which can properly define the inelastic behavior of panel zones with various column flange thicknesses and to determine a more rational design strength.

  • PDF

A Study on Inelastic Behavior of an Asymmetric Tall Building (비대칭 초고층건물의 비탄성거동에 관한 연구)

  • 윤태호;김진구;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper, the inelastic behavior of an asymmetric tall building is investigated. The asymmetry in rigidity caused by the structural asymmetry induces torsional as well as lateral deformation. The inelastic analysis of such an asymmetric structure is difficult to carry out with a planar model and thus requires a full three dimensional model. In this paper a 102 story unsymmetric tall building is analized by static push-over procedure and its behavior is investigated. The analysis are performed with and without floor rotation to compare the results. According to the results the static behavior of the model building, as expected, turned out to be dependent heavily an the asymmetry of the plan shapes of the building.

  • PDF

Experimental and numerical study of a steel plate-based damper for improving the behavior of concentrically braced frames

  • Denise-Penelope N. Kontoni;Ali Ghamari;Chanachai Thongchom
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.185-201
    • /
    • 2023
  • Despite the high lateral stiffness and strength of the Concentrically Braced Frame (CBF), due to the buckling of its diagonal members, it is not a suitable system in high seismic regions. Among the offered methods to overcome the shortcoming, utilizing a metallic damper is considered as an appropriate idea to enhance the behavior of Concentrically Braced Frames (CBFs). Therefore, in this paper, an innovative steel damper is proposed, which is investigated experimentally and numerically. Moreover, a parametrical study was carried out to evaluate the effect of the mechanism (shear, shear-flexural, and flexural) considering buckling mode (elastic, inelastic, and plastic) on the behavior of the damper. Besides, the necessary formulas based on the parametrical study were presented to predict the behavior of the damper that they showed good agreement with finite element (FE) results. Both experimental and numerical results confirmed that dampers with the shear mechanism in all buckling modes have a better performance than other dampers. Accordingly, the FE results indicated that the shear damper has greater ultimate strength than the flexural damper by 32%, 31%, and 56%, respectively, for plates with elastic, inelastic, and plastic buckling modes. Also, the shear damper has a greater stiffness than the flexural damper by 43%, 26%, and 53%, respectively, for dampers with elastic, inelastic, and plastic buckling modes.

A Constitutive Model for the Rate-dependent Deformation Behavior of a Solid Polymer (속도 의존적인 폴리머 거동에 대한 구성적 모델)

  • Ho, K.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.216-222
    • /
    • 2013
  • Solid polymers exhibit rate-dependent deformation behavior such as nonlinear strain rate sensitivity and stress relaxation like metallic materials. Despite the different microstructures of polymeric and metallic materials, they have common properties with respect to inelastic deformation. Unlike most metallic materials, solid polymers and shape memory alloys (SMAs) exhibit highly nonlinear stress-strain behavior upon unloading. The present work employs the viscoplasticity theory [K. Ho, 2011, Trans. Mater. Process. 20, 350-356] developed for the pseudoelastic behavior of SMAs, which is based on unified state variable theory for the rate-dependent inelastic deformation behavior of typical metallic materials, to depict the curved unloading behavior of polyphenylene oxide (PPO). The constitutive equations are characterized by the evolution laws of two state variables that are related to the elastic modulus and the back stress. The simulation results are compared with the experimental data obtained by Krempl and Khan [2003, Int. J. Plasticity 19, 1069-1095].

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.741-758
    • /
    • 2013
  • In this study, inelastic displacement ratios are investigated for existing systems with known lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil structure interaction analyses are conducted by means of equivalent fixed base model effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or degrading behavior as a function of structural period ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}$/T). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Analytical Study on Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.178-181
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

  • PDF