• Title/Summary/Keyword: Industry concentration

Search Result 2,078, Processing Time 0.03 seconds

Impact of sodium or potassium cations in culture medium to ethanol fermentation by Saccharomyces cerevisiae (배양액내 나트륨 및 칼륨 이온 농도가 Saccharomyces cerevisiae의 발효에 미치는 영향)

  • Song, Woo-Yong;Seung, Hyun-A;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • In bioethanol from acid hydrolysis process, neutralization of acid hydrolyzate is essential step, which resulted in dissolved cations in glucose solution. Impact of cations to Saccharomyces cerevisiae in glucose solution was investigated focused on ethanol fermentation. Both potassium and sodium cations decreased the ethanol fermentation and glucose to ethanol conversion as potassium or sodium cations. In sodium cation, more than 1.13 N sodium cation in glucose solution led to ethanol production less than theoretical yield with severe inhibition. In 1.13 N sodium cation concentration, ethanol fermentation was slowed down to reach the maximum ethanol concentration with 48 h fermentation compared with 24 h fermentation in control (no sodium cation in glucose solution). In case of potassium cation, three different levels of potassium led to silimar ethanol concentration even though slight slow down of ethanol fermentation with increasing potassium cation concentration at 12 h fermentation. Sodium cation showed more inhibition than potassium cation as ethanol concentration and glucose consumption by Saccharomyces cerevisiae.

A Study on the Cu2+ Behavior in Activated Sludge Process (활성슬러지공정에서 구리의 거동에 관한 연구)

  • Park, Jin-Do;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1119-1127
    • /
    • 2010
  • The behavior of copper throughout the whole process of wastewater treatment plant that uses the activated sludge process to treat the wastewater of petrochemical industry that contains low concentration of copper was investigated. Total inflow rate of wastewater that flows into the aeration tank was $697\;m^3$/day with 0.369 mg/L of copper concentration, that is, total copper influx was 257.2 g/day. The ranges of copper concentrations of the influent to the aeration tank and effluent from the one were 0.315 ~ 0.398 mg/L and 0.159 ~ 0.192 mg/L, respectively. The average removal rate of copper in the aeration tank was 50.8 %. The bioconcentration factor (BCF) of copper by microbes in the aeration tank was 3,320. The accumulated removal rate of copper throughout the activated sludge process was 71.3%, showing a high removal ratio by physical and chemical reactions in addition to biosorption by microbes. The concentration of copper in the solid dehydrated by filter press ranged from 74.8 mg/kg to 77.2 mg/kg and the concentration of copper by elution test of waste was 2.690 ~ 2.920 mg/L. It was judged that the copper concentration in dehydrated solid by bioconcentration could be managed with the control of that in the influent.

Impact of sodium or potassium concentration in glucose aquoes solution to fermentation by Kluyveromyces marxianus (배양액내 나트륨과 칼륨의 농도가 고온 발효 균주 Kluyveromyces marxianus의 발효에 미치는 영향)

  • Song, Woo-Yong;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.3
    • /
    • pp.11-17
    • /
    • 2015
  • In acid hydrolysis process of biomass saccharification. neutralization of acid hydrolyzate is essential step, which resulted in dissolved cations in glucose solution. Impact of cations to Kluyveromyces marxianus in glucose solution was investigated focused on ethanol fermentation. Either potassium or sodium cations decreased the ethanol fermentation and glucose to ethanol conversion. Glucose consumption by K. marxianus was delayed by increasing potassium cation concentration as completely consumed within 12 h in potassium cation 0.46 mol and 0.92 mol but within 24 h in potassium cation 1.38 mol. Also, ethanol fermentation process was slowed down with increasing concentration of the potassium sulfate. Fermentation of glucose solution to ethanol was more inhibited by sodium cation than potassium cation in glucose solution. Glucose was completely consumed within 24 h in sodium cation 0.95 mol. but at 1.90 mol or 2.84 mol in sodium cation could not finish the fermentation within 48 hour. Ethanol concentration was 22.26 g/L at low sodium cation in glucose solution with complete fermentation within 24 h. With increasing sodium cation in glucose solution, final ethanol concentration was reached at 14.10 g/L (sodium cation con) and 0.21 g/L (sodium cation con), which meant delaying of fermentation by sodium cations.

The change of air lead concentrations in litharge making and smelting industries (일부 제련 및 리사지 사업장에서 공기중 납 노출농도의 변화)

  • Choi, Jae-Wook;Kim, Nam-Soo;Cho, Kwang-Sung;Ham, Jung-O;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • To provide necessary information for future environmental monitoring of smelting and litharge making industries in Korea, environmental monitoring dataset of air lead concentration of 4 lead industries(1 primary smelting, 2 secondary smelting and 1 litharge making industry) were analyzed from 1994 to 2007. Data were compared using geometric mean and standard deviation with minimum and maximum values according to year of measurement, type of lead industries and type of operation of lead industries. The geometric mean and standard deviation of air concentration for a total of 1140 samples in all lead industries for overall 14 years were 70.7${\mu}g/m^3$ and 5.51 with minimum of 1${\mu}g/m^3$ and maximum of 9,185 ${\mu}g/m^3$. The overall geometric means of air concentration were above the permissible exposure levels(PEL) until year of 2001 and thereafter they were remained at the level of half of PEL. The geometric means of primary smelting, secondary smelting and litharge making industry for overall 14 years were 21.7${\mu}g/m^3$(number of samples: 353), 82.5${\mu}g/m^3$(number of samples: 357) and 164.2 ${\mu}g/m^3$(number of samples: 430) respectively. In primary smelting industry, the highest geometric mean air concentration was 35.4 ${\mu}g/m^3$ in the secondary smelting operation; followed by casting operation (24.9 ${\mu}g/m^3$) and melting operation (14.9 ${\mu}g/m^3$), respectively. On the other hand, in secondary smelting industries, the highest geometric mean air concentration was 125.4${\mu}g/m^3$ in melting operation; followed by casting operation (90.5${\mu}g/m^3$) and pre-treatment operation (43.4${\mu}g/m^3$), respectively. However, in litharge making industries, there were no significant differences of geometric mean air concentrations between litharge operation and stabilizer operation. The proportion of over PEL (50${\mu}g/m^3$) was highest in litharge industry and followed by secondary smelting industries. However The proportions of over PEL(${\mu}g./m^3.$) were decreased by the years of environmental monitoring. The significant reduction of mean air lead concentration since year of 2000 was observed due to more active environmental engineering control and new introduction of new operation in manufacturing process, but may be also influenced by non-engineering method such as reduction of operation hours or reduction of exposure time during actual environmental measurement by industrial hygienist according to more strict enforcement of occupational and safety law by the government.

A pilot study on increased blood lead concentration of some foreign workers in lead refining industry (일부 납 제련업 종사 외국인 근로자의 납 노출 실태)

  • Yang, Jeong Sun;Kim, Tae Kyun;Park, In-Jeong;Kim, Min Gi;Lee, Sun Wung;Heo, Kyung-Hwa;Kang, Seong-Kyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.248-251
    • /
    • 2008
  • During survey of blood lead concentration of workers who worked in lead refining industry, we found that some foreign workers showed increased blood lead level compared with that of domestic workers. The mean concentration of lead in blood for foreign workers (15%, 13 workers, mean age: 29) was 55.8 ug/dL which was over biological exposure index, while that of Korean workers (85%, 76 workers, mean age: 42) was 28.9 ug/dL. Some other biological markers of lead exposure such as ZPP and ${\delta}-ALA$ also showed elevated levels. Most of foreign workers stayed in dormitories near or in the factories that may cause to let them under the condition of 24 hours exposure of lead. The lack of safety manual on proper prevention of lead exposure in their own language for effective communication may be one of reasons of elevated blood lead concentration of foreign workers.

Improvement of Anthocyanin Encapsulation Efficiency into Yeast Cell by Plasmolysis, Ethanol, and Anthocyanin Concentration Using Response Surface Methodology

  • Dong, Lieu My;Hang, Hoang Thi Thuy;Tran, Nguyen Huyen Nguyet;Thuy, Dang Thi Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.267-275
    • /
    • 2020
  • Anthocyanins are antioxidant compounds susceptible to environmental factors. Anthocyanin encapsulation into yeast cells is a viable solution to overcome this problem. In this study, the optimal factors for anthocyanin encapsulation were investigated, including anthocyanin concentration, plasmolysis contraction agent, and ethanol concentration, and response surface methodology was evaluated, for the first time. Anthocyanin from Hibiscus sabdariffa L. flowers was encapsulated into Saccharomyces cerevisiae using plasmolysis contraction agent (B: 3%-20% w/v), ethanol concentration (C: 3%-20% v/v), and anthocyanin concentration (A: 0.15-0.45 g/ml). The encapsulation yield and anthocyanin loss rate were determined using a spectrometer (520 nm), and color stability evaluation of the capsules was performed at 80℃ for 30 min. The results of the study showed that these factors have a significant impact on the encapsulation of anthocyanin, in which ethanol agents have the highest encapsulation yield compared to other factors in the study. Statistical analysis shows that the independent variables (A, B, C), their squares (A2, B2, C2), and the interaction between B and C have a significant effect on the encapsulation yield. The optimized factors were anthocyanin, 0.25 g/ml; NaCl, 9.5% (w/v); and ethanol, 11% (v/v) with an encapsulation yield of 36.56% ± 0.55% and anthocyanin loss rate of 15.15% ± 0.98%; This is consistent with the expected encapsulation yield of 35.46% and loss rate of 13.2%.

Development of a Sensitive Bioassay Method for Quorum Sensing Inhibitor Screening Using a Recombinant Agrobacterium tumefaciens

  • Kim Yeon Hee;Kim Young Hee;Kim Jung Sun;Park Sunghoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.322-328
    • /
    • 2005
  • Acylhomoserine lactones (AHLs) are known to be the triggering molecules in the quorum sensing mechanism of many gram-negative bacteria. In order to detect AHL inhibitors that are potential biofilm inhibitors, a convenient and sensitive bioassay was developed based on the $\beta$-galactosidase activity ($\beta$-GAL) of a recombinant Agrobacterium tumefaciens strain. A series of commercially available AHLs were tested for inducing $\beta$-GAL at varying concentrations in agar-plate and liquid cultures of the reporter strain. All AHLs tested exhibited a concentration­dependent induction, and octanoyl homoserine lactone (OHL) showed the highest sensitivity with a detection limit of 0.1 nM in the liquid culture assay. When fimbrolide, a known quorum sensing inhibitor, was added, induction of $\beta$-GAL by OHL was repressed. The repression at a constant OHL concentration was dependent on the fimbrolide concentration with the detection limit below 1 ppm, indicating that this assay is a sensitive method for screening AHL inhibitors.

Evaluation of Genotoxicity in Blood Cells of a Polychaetous Worm (Perinereis aibuhitensis), Using Comet Assay (Comet assay를 이용한 갯지렁이 (Perinereis aibuhitensis)의 혈구세포에 대한 유전독성 평가)

  • Seo Jin Young;Sung Chan Gyoung;Choi Jin Woo;Lee Chang Hoon;Ryul Tae Kwon;Han Gi Myung;Kim Gi Beum
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.333-341
    • /
    • 2005
  • In order to know whether polychaetes could be used as an appropriate organism for the detection of genotoxicity, DNA strand breaks were evaluated in blood cells of a nereidae worm (Perinereis aibuhitensis) exposed to various aquatic chemical pollutants (e.g. Cd, Pb, Pyrene, Benaor[a]pyrene). Hydrogen peroxide increased DNA strand breaks up to the highest concentration (10 $\mu$M). Higher concentration than 0.1 $\mu$M showed a significantly more DNA damage than control. Cadmium and lead also showed higher DNA damage than control, over 1.0 and 1 $\mu$g/L, respectively. In case of pyrene, DNA damage was detected even at 0.001 $\mu$g/L. However, DNA damage decreased due to apoptosis at the highest concentration of pyrene and Pb. This study suggested that the polythaetous blood cells could be used effectively for screening genotoxic contaminants in the environment.

Exposure Assessment of Airborne Hexavalent Chromium in the South Korea Plating Industry (도금사업장에서 발생하는 공기 중 6가 크롬의 노출평가)

  • Ji-hyun An;Young Gyu Phee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.98-105
    • /
    • 2024
  • Objectives: The purpose of this study was to identify the exposure level of airborne hexavalent chromium in the plating industry and the exposure level compared to domestic and international occupational exposure limits. Methods: A total 92 samples were collected from ten industrial plating sites. Hexavalent chromium samples were collected using a three-stage cassette equipped with a 37 mm, 5 ㎛ pore size PVC filter. The analysis was performed by ion chromatography. Results: The geometric mean of hexavalent chromium concentration in the plating industry was 0.052 ㎍/m2, and it was found that the average exposure level was 0.8 times the South Korean exposure limit. When applying the US ACGIH TLV, however, the average concentration was more than twice as high. Conclusions: The South Korean exposure limit for hexavalent chromium needs to be strengthened due to significant differences in exposure levels according to domestic and international occupational exposure limits. Furthermore, respiratory and dermal sensitization should be labeled.

Analysis of secondary reactions in concentrated sulfuric acid hydrolysis of hollocellulose by 1H-NMR spectroscopy (1H-NMR 분광분석을 통한 진한 산 가수분해 반응 2차 반응 조건 분석)

  • Lee, Jai-Sung;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.37-43
    • /
    • 2014
  • Kinetics of holocellulose hydrolysis in concentrated sulfuric acid was analyzed using $^1H$-NMR spectroscopy with different reaction time, temperature and acid concentration in secondary hydrolysis. In this work, reaction condition of secondary hydrolysis was similar to concentrated sulfuric acid process with electrodialysis or simulated moving bed chromatography process for sulfuric acid recycling. By $^1H$-NMR spectroscopy, acid hydrolyzates from higher secondary acid hydrolysis (25-35% acid concentration) was successfully analyzed without any difficulties in neutralization or adsorption of acid hydrolyzate to solid salt. Higher acid concentration, higher temperature and longer reaction time led to more cellulose for glucose conversion but accompanied with glucose to galactose isomerization, glucose to unknown compounds and degradation of glucose to organic acid via furans.