• 제목/요약/키워드: Industry and Energy

검색결과 3,520건 처리시간 0.03초

The Economic Effect of Industrial Investment on North Korea Natural Gas and Coal (북한 천연가스산업과 석탄산업 투자에 따른 경제적 파급효과)

  • Kim, Hyoungtae;Chae, Jungmin;Cho, Youngah
    • Journal of Energy Engineering
    • /
    • 제25권3호
    • /
    • pp.1-8
    • /
    • 2016
  • North Korea is currently undergoing an economic crisis of industrial productivity reduction, which resulted from decreased energy production and economic sanctions due to conflicts with the international society. This paper examined the technological status of North Korea's natural gas and coal industries which are essential sectors for recovery of the economy and North-South cooperation on energy industry. This paper also analyzed investment strategies in North Korean energy industries and calculated the size of economic ripple effect of the investment on North and South Korea. In order to analyze the effect of the investment on North Korean economy, we constructed an inter-industry relation table of North Korea for year 2014 and used an input-output model. The ripple effect of the investment in natural gas and coal industries turned out to be 1.012 billion dollars and 2.742 billion dollars respectively. In order to analyze the ripple effect of the investment on South Korean economy, we constructed an inter-industry relation table of South Korea for year 2013 and used a demand-driven model for inter-industry analysis. As a result, production, added-value and employment inducement coefficients of the investment were calculated as 2.02073, 0.62697 and 8.99409 for the natural gas industry and 2.02130, 0.62701 and 9.00413 for the coal industry respectively.

Analysis of the Green House Gas Reduction Scenarios in the Cement Manufacturing Industry (시멘트산업의 온실가스 배출저감 시나리오 분석)

  • Kim, Hyun-Suk;Kang, Hee-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제22권6호
    • /
    • pp.912-921
    • /
    • 2006
  • This study examines greenhouse gas reduction potentials in cement manufacturing industry of Korea. An energy system model in the MARKAL (MARKet ALlocation) modeling framework was used in order to identify appropriate energy technologies and to quantify their possible implications In terms of greenhouse gas reduction. The model is characterized as mathematical tool for the long term energy system analysis provides an useful informations on technical assessment. Four scenarios are developed that covers the ti me span from 2000 to 2020. Being technology as a fundamental driving factor of the evolution of energy systems, it is essential to study the basic mechanisms of technological change and its role in developing more efficient, productive and clean energy systems. For this reasons, the learning curves on technologies for greenhouse gas reduction is specially considered. The analysis in this study shows that it is not easy to mitigate greenhouse gas with low cost in cement manufacturing industry under the current cap and trade method of Kyoto protocol.

Effect of Age on Energy Requirement for Maintenance and Growth of Dorper and Hu Crossbred F1 Ewes Weighing 20 to 50 kg

  • Nie, H.T.;Wan, Y.J.;You, J.H.;Wang, Z.Y.;Lan, S.;Fan, Y.X.;Wang, F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1140-1149
    • /
    • 2015
  • This research aimed to define the energy requirement of Dorper and Hu Hybrid $F_1$ ewes 20 to 50 kg of body weight, furthermore to study energy requirement changes with age and evaluate the effect of age on energy requirement parameters. In comparative slaughter trial, thirty animals were divided into three dry matter intake treatments (ad libitum, n = 18; low restricted, n = 6; high restricted, n = 6), and were all slaughtered as baseline, intermediate, and final slaughter groups, to calculate body chemical components and energy retained. In digestibility trial, twelve ewes were housed in individual metabolic cages and randomly assigned to three feeding treatments in accordance with the design of a comparative slaughter trial, to evaluate dietary energetic values at different feed intake levels. The combined data indicated that, with increasing age, the net energy requirement for maintenance ($NE_m$) decreased from $260.62{\pm}13.21$ to $250.61{\pm}11.79kJ/kg^{0.75}$ of shrunk body weight (SBW)/d, and metabolizable energy requirement for maintenance (MEm) decreased from $401.99{\pm}20.31$ to $371.23{\pm}17.47kJ/kg^{0.75}$ of SBW/d. Partial efficiency of ME utilization for maintenance ($k_m$, 0.65 vs 0.68) and growth ($k_g$, 0.42 vs 0.41) did not differ (p>0.05) due to age; At the similar condition of average daily gain, net energy requirements for growth ($NE_g$) and metabolizable energy requirements for growth ($ME_g$) for ewes during late fattening period were 23% and 25% greater than corresponding values of ewes during early fattening period. In conclusion, the effect of age upon energy requirement parameters in the present study were similar in tendency with previous recommendations, values of energy requirement for growth ($NE_g$ and $ME_g$) for Dorper and Hu crossbred female lambs ranged between the NRC (2007) recommendation for early and later maturating growing sheep.

The Economic Impacts of Subsidizing Water Industry Under Greenhouse Gases Mitigation Policy in Korea: A CGE Modeling Approach (국가 온실가스 저감정책과 물산업 지원의 경제적 영향 분석 - 연산일반균형모형 분석)

  • Kim, Jae Joon;Park, Sung Je
    • Journal of Korea Water Resources Association
    • /
    • 제45권12호
    • /
    • pp.1201-1211
    • /
    • 2012
  • This paper constructed the single country sequential dynamic CGE model to analyze the economic impacts of subsidizing water industry under the GHG emission abatement policy in Korea. We introduced the carbon tax to reduce the GHG emission and made two scenarios. One is to transfer the total tax revenue to household. The other is to mix the tax transfer and water industry support. Our Simulation results show that the macroeconomic effects might be positive by subsidizing water industry compared with the pure tax transfer. However, the support of water industry doesn't contribute to head for the non-energy intensive economy because it's economic activity highly depend on fossil energy and energy intensive products as intermediate demand. This means that it is important to make efforts on the cost effective measures such as energy technology progress, alternative energy development, and energy efficiency improvement in water industry against climate change policy.

Effect of Gamma Ray on Molecular Structures of Alkali-Lignin (감마선이 알칼리 리그닌의 분자구조에 미치는 영향)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • 제5권3호
    • /
    • pp.249-252
    • /
    • 2011
  • Lignin is one of the natural macromolecules. Every year large amount of lignin arises from the cellulose production as a by-product worldwide. The use of lignin as a precursor to carbonaceous materials has gained interest due to its low cost and high availability. Therefore, we improved the properties of alkali-lignin by exposing to gamma ray in this study. The alkali-lignin is irradiated by Gamma ray irradiation with varying doses. The char yields of alkali-lignin were investigated by increasing up to 50 kGy. The cross-linking and bond scission of alkali-lignin occur simultaneously during gamma ray irradiation. The crosslinking was predominantly accelerated by gamma ray irradiation up to 50 kGy. Bond scission predominantly occurs between 50 and 500 kGy. ESCA analysis indicated that the alcoholic carbon increase up to 50 kGy. Solution viscosity was increased as absorbed dose increased up to 20 kGy. In addition, the aromatic ring was not influenced by irradiation at doses ranging from 20 to 500 kGy as shown in FT-IR results.

Removal of Organic Matter and Nutrient in Swine Wastewater Using a Membrane System

  • Lim, Seung Joo;Kim, Sun Kyong;Lee, Yong-gu;Kim, Tak-Hyun
    • Journal of Radiation Industry
    • /
    • 제6권1호
    • /
    • pp.75-82
    • /
    • 2012
  • Swine wastewater was treated using a unique sequence of ion exchange membrane bed system (IEBR). Organic matter and nutrient in swine wastewater was pre-treated by electron beam irradiation. The optimal dose for solubilization of organic matter in swine wastewater ranged from 20 kGy to 75 kGy. The carbohydrates, proteins, and lipids were investigated as the solubilized organic fraction of swine wastewater and proteins and lipids mainly contained of the solubilized organic matter. The solubilization of organic matter in swine wastewater was affected by the combination effect of temperature and a dose. The average chemical oxygen demand (COD) removal efficiency under room temperature conditions was 67.1%, while that under psychrophilic conditions was 54.6%. For removal of ammonia, the removal efficiency decreased from 63.6% at $23^{\circ}C$ to 33.5% $16.8^{\circ}C$. On the other hand, the removal of phosphorus was not a function of temperature. Struvite was one of main mechanisms in anaerobic condition.

Thermal Stabilization Effect of PAN Nanofibers Irradiated by Electron Beam Irradiation (전자선 처리된 PAN 나노섬유의 열안정화 효과)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • 제6권1호
    • /
    • pp.61-65
    • /
    • 2012
  • Polyacrylonitrile (PAN) is one of the most widely used precursor polymers for making high performance carbon fibers. Conversion of PAN fibers to good quality carbon fibers requires an essential stabilization step prior to carbonization. Electron beam irradiation is an excellent technique for modifying the physical properties of materials. This study aimed to elucidate the effects of electron beam irradiation on the stabilization reactions of PAN nanofibers. FT-IR analysis indicated that the stabilization of irradiated PAN nanofibers was initiated at a lower temperature. The TG curve of PAN nanofibers showed a significant decrease of weight loss step between 280 and $320^{\circ}C$. In the case of irradiated PAN nanofibers, weight loss sudden weight did not loss occurs.

Utilizing public data to promote renewable energy supply -Focusing on geothermal energy related data- (신재생에너지 보급 활성화를 위한 공공데이터 활용 방안 -지열에너지 연관 데이터를 중심으로-)

  • Gim, Yu-Seung;Ryu, Hyung-Kyou;Choi, Seung-Hyuck
    • Journal of the Korea Convergence Society
    • /
    • 제9권11호
    • /
    • pp.253-262
    • /
    • 2018
  • Recently, the energy industry is implementing renewable energy supply policy to reduce energy consumption. The purpose of this study is to build a database that can help promote the supply of geothermal energy system to prepare for the increase of renewable energy demand and to develop a method to evaluate the possibility of geothermal energy system installation by using database information. The data used in the study was reliable using open data provided by national agencies. We obtained information necessary for the possibility of geothermal energy system installation, constructed a dedicated database, and studied the method of calculating the geothermal well capacity by using the database information. In the future, this study will establish a local environmental evaluation standard and add information on other renewable energy to contribute to the activation of renewable energy supply.

Effect of Electron Beam Currents on Stabilization of Polyacrlonitrile Precursor Fiber (PAN 전구체 섬유의 안정화시 전자선 전류의 영향)

  • Shin, Hye Kyoung;Jeun, Joon Pyo;Kim, Hyun bin;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • 제5권1호
    • /
    • pp.41-46
    • /
    • 2011
  • Polyacrylonitrile (PAN) fibers are the most widely used precursor of the materials for carbon fibers. The conventional process of carbon fibers from PAN precursor fiber includes two step; stabilization at low temperature and carbonization at high temperature. Compared to thermal stabilization, the stabilization process by electron beam (E-beam) irradiation is a advanced and brief method. However, a stabilization by E-beam irradiation was required a high dose (over 5,000 kGy) and spend over 1.5 hr (1.14 MeV, 1 mA). In the present work the main goal is exploring a quick stabilization process by cotrolling E-beam currents. The effect of various E-beam currents on stabilization of PAN precursor fiber was studied by gel fraction test, thermo gravimertic analysis (TGA), differential scanning calorimetry (DSC), tensile strength, and scanning electron microscopy (SEM) images.

Effect of Electron Beam Irradiation on the Properties of Carbon Fiber (전자선 조사에 따른 탄소섬유 물성 변화)

  • Jeun, Joon Pyo;Shin, Hye-Kyoung;Kim, Hyun Bin;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • 제4권3호
    • /
    • pp.259-263
    • /
    • 2010
  • Carbon fibers are used as a reinforcement material in an epoxy matrix in advanced composites due to their high mechanical strength, rigidity and low specific density. An important aspect of the mechanical properties of composites is associated to the adhesion between the surface of the carbon fiber and the epoxy matrix. This paper aimed to evaluate the effects of electron beam irradiation on the physicochemical properties of carbon fibers to obtain better adhesion properties in resultant composite. Chemical structure and surface elements of carbon fiber were determined by FT-IR, elemental analysis and X-ray photoelectron spectroscopy, which indicated that the oxygen content increased significantly with increasing the radiation dose. Thermal stability of the carbon fibers was studied via the thermalgravimetric analysis. Surface morphology of carbon fiber was analyzed by scanning electron microscope. It was found that the degree of surface roughness was increased by electron beam irradiation.