• Title/Summary/Keyword: Industrial wastewater treatment

Search Result 493, Processing Time 0.028 seconds

The applications of ozone-based advanced oxidation processes for wastewater treatment: A review

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.191-214
    • /
    • 2020
  • The rise in population and industrialization accounts for the generation of a huge amount of wastewaters. The treatment of this wastewater is obligatory to safeguard the environment and various life forms. Conventional methods for high strength wastewater treatment coming out to be ineffective. Advanced oxidation processes (AOPs) for such wastewater treatment proved to be very effective particularly for the removal of various refractory compounds present in the wastewater. Ozone based AOPs with its high oxidizing power and excellent disinfectant properties is considered to be an attractive choice for the elimination of a large spectrum of refractory compounds. Furthermore, it enhances the biodegradability of wastewaters after treatment which favors subsequent biological treatments. In this review, a detailed overview of the AOPs (like the Fenton process, photocatalysis, Electrochemical oxidation, wet air oxidation, and Supercritical water oxidation process) has been discussed explicitly focusing on ozone-based AOPs (like O3, O3/H2O2, O3/UV, Ozone/Activated carbon process, Ozone/Ultrasound process, O3/UV/H2O2 process). This review also comprises the involved mechanisms and applications of various ozone-based AOPs for effective municipal/industrial wastewaters and landfill leachate treatment. Process limitations and rough economical analysis were also introduced. The conclusive remarks with future research directions also underlined. It was found that ozonation in combination with other effective AOPs and biological methods enhances treatment efficacies. This review will serve as a reference document for the researchers working in the AOPs field particularly focusing on ozone-based AOPs for wastewater treatment and management systems.

Industrial wastewater treatment by using of membrane

  • Razavi, Seyed Mohammad Reza;Miri, Taghi;Barati, Abolfazl;Nazemian, Mahboobeh;Sepasi, Mohammad
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.489-499
    • /
    • 2015
  • In this work, treatment of real hypersaline refinery wastewater by hollow fiber membrane bioreactor coupled with reverse osmosis unit was studied. The ability of HF-MBR and RO developed in this work, was evaluated through examination of the effluent properties under various operating conditions including hydraulic retention time and flux. Arak refinery wastewater was employed as influent of the bioreactor which consists of an immersed ultrafiltation membrane. The HF-MBR/RO was run for 6 months. Average elimination performance of chemical oxygen demand, biological oxygen demand, total suspended solids, volatile suspended solids, total dissolved soild and turbidity were obtained 82%, 89%, 98%, 99%, 99% and 98% respectively. Highly removal performance of oily contaminant, TDS and the complete retention of suspends solids implies good potential of the HF-MBR/RO system for wastewater refinement.

Application of peak load for industrial water treatment plant design (공업용수 정수장 설계시 첨두부하 적용방안)

  • Kim, Jinkeun;Lee, Heenam;Kim, Dooil;Koo, Jayong;Hyun, Inhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.225-231
    • /
    • 2016
  • Peak load rate(i.e., maximum daily flow/average daily flow) has not been considered for industrial water demand planning in Korea to date, while area unit method based on average daily flow has been applied to decide capacity of industrial water treatment plants(WTPs). Designers of industrial WTPs has assumed that peak load would not exist if operation rate of factories in industrial sites were close to 100%. However, peak load rates were calculated as 1.10~2.53 based on daily water flow from 2009 to 2014 for 9 industrial WTPs which have been operated more than 9 years(9-38 years). Furthermore, average operation rates of 9 industrial WTPs was less than 70% which means current area unit method has tendency to overestimate water demand. Therefore, it is not reasonable to consider peak load for the calculation of water demand under current area unit method application to prevent overestimation. However, for the precise future industrial water demand calculation more precise data gathering for average daily flow and consideration of peak load rate are recommended.

A Study on the Feasibility of COBie to the Wastewater Treatment Plant (COBie 기반 하수처리시설 유지관리시스템 구축)

  • Choi, Jae-Ho;Um, Dong-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.273-283
    • /
    • 2014
  • With the introduction of COBie (Construction Operation Building Exchange) in BIM technology enabling an automatic transfer of design and construction information to operation and management (O&M) phase, the BIM centric O&M management system development process has been tested on the subject of architectural types of building. However, for now, there is a need to investigate the technical feasibility of COBie application to civil structures including industrial facilities. This study takes both "O&M Guideline for Public Wastewater Treatment Plant" and a real wastewater treatment plant into account for the purpose, in which the latter is intended to supplement the result of the first. The findings are three-folds: (1) COBie, as an asset modeling, is not sufficient enough to encompass commissioning data, (2) more relevant IFC development and family library build-up useful to modeling wastewater treatment plant is imperative, and (3) well-planned coordination and organization of COBie data-set in line with O&M practice will enhance the feasibility of the COBie in industrial facilities. The result could be used for a basis study for COBie application, particularly in industrial facilities.

Advanced Biological Treatment of Industrial Wastewater using Food Waste Leachate as an External Carbon Source: Full-Scale Experiment (음식물쓰레기 탈리액을 이용한 산업폐수의 생물학적 고도처리 실증실험)

  • Lee, Byeongcheol;Ahn, Johwan;Lee, Junghun;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.461-466
    • /
    • 2011
  • The feasibility of utilizing food waste leachate as an external carbon source was tested to enhance biological nutrient removal from an industrial wastewater with an average flow rate of $164,800m^3/d$ and a low carbon/nitrogen ratio of 2.8. A considerable improvement in the removal of nitrogen and phosphorus was observed when a certain amount of the leachate, ranging from 70 to $142m^3/d$, was supplemented to the biological industrial wastewater treatment process. The addition of the leachate led to an increase in the BOD/N ratio (4.5) and the removal efficiency of nutritents from 29.7% to 71.7% for nitrogen and from 34.8% to 65.6% for phosphorus. However, an excessive dose of the leachate that significantly exceeded $120m^3/d$ caused serious operational problems, like oil-layer formation in the grit chamber and scum layer in the primary clarifier. Thus, an supplement of food waste leachate at a dose acceptable to an existing facilities can be a practical and effective means to enhance the nutrient removal from industrial wastewater and to dispose of the food waste leachate.

Current Condition and Prospect of On-Site Domestic Wastewater Treatment Technologies (합병정화조 기술현황 및 전망)

  • 임연택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.95-112
    • /
    • 1998
  • Water quality in the public water course has been polluted more seriously than ever before due to the increase of the number and aremount of pollution sources such as domestic and industrial wastewater. For water quality conservation, the Korean government has been trying to construct sewage treatment facilities continually, of which treatment capacity reached to 11,452,400m$^{3}$/day in 1996. Night soil treatment facilites of m nationwide have the treatment capacity of 24,038m$^{3}$/day. But water quality has not been improved because the sewer systems were insufficient and the treatment efficiencies of sewage were not high, enough. For renovation of water quality, miscellaneous domestic wastewater must be treated because 27g BOD/day out of total 40g BOD/person-day come from miscellaneous wastewater, comparing to 13g BOD/day from night soil. However, sole treatment purifier treat only night soil from the flushing toilet. Therefore, it may be desirable to treat the miscellaneous domestic wastewater and the night soil from flushing toilet together by joint treatment purifier system as on-site domestic wastewater treatment technology. In Korea, the joint treatment purifier system, introduced in 1997, have the benefit as follows; i) good water poiluion control effect, ii ) good effect on river water flow, iii) water pollution control with sewage treatment facility, and iv) rapid pollution control effect, etc. In order to achieve a good effect as stated before, i ) strengthening effluent guideline including BOD, nitrogen and phosphorus, ii ) specializing operation to maintain high performance, and iii) supporting its construction and maintenance costs by the governmental level may be necessary: In addition, automation system of joint treatment purifier, technology for its package and compactness, and a new bio-media bio-filter with higher capacity should be further developed in agreement with a more stringent effluent guideline.

  • PDF

Treatment of Industrial Wastewater including 1,4-Dioxane by Fenton Process and Electrochemical Iron Redox Reaction Process (Fenton공정과 철 이온의 전기적 산화·환원 반응을 이용한 공정에서 1,4-Dioxane을 포함하는 산업폐수 처리에 관한 연구)

  • Lee, Sang Ho;Kim, Pan Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.375-383
    • /
    • 2007
  • Treatment efficiency research was performed using Fenton process and the electrochemical process in the presence of ferrous ion and hydrogen peroxide for the industrial wastewater including 1,4-Dioxane produced during polymerization of polyester. The Fenton process and the electrochemical Iron Redox Reaction (IRR) process were applied for this research to use hydroxyl radical as the powerful oxidant which is continuously produced during the redox reaction with iron ion and hydrogen peroxide. The results of $COD_{Cr}$ and the concentration of 1,4-Dioxane were compared with time interval during the both processes. The rapid removal efficiency was obtained for Fenton process whereas the slow removal efficiency was occurred for the electrochemical IRR process. The removal efficiency of $COD_{Cr}$ for 310 minutes was 84% in the electrochemical IRR process with 1,000 mg/L of iron ion concentration, whereas it was 91% with 2,000 mg/L of iron ion concentration. The lap time to remove all of 1,4-Dioxane, 330 mg/L in the wastewater took 150 minutes with 1,000 mg/L of iron ion concentration, however it took 120 minutes with 2,000 mg/L of iron ion concentration in the electrochemical IRR process.

Treatment of the Chromium Containing Wastewater by Electrolysis (전기분해에 의한 크롬폐수처리)

  • 전종남;전범용;윤용수;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.131-138
    • /
    • 1997
  • In this study, the effect of the various operating conditions on the removal of $Cr^{6+}$ from $Cr^{6+}$ containing wastewater which has strong toxicity by using electrolysis with iron electrode as anode and aluminum electrode as cathode was investigated. The removal efficiency of $Cr^{6+}$ was increased as the pH was decreased, as the distance of electrode was decreased and the voltage was increased. The reaction temperature slightly affected the removal efficiency. The optimum conditions for the treatment of $Cr^{6+}$ containing wastewater were initial pH 3, 5 volt and the distance of electrode was 1cm. The feasibility of the electrochemical treatment to the $Cr^{6+}$ containing industrial wastewater was verified from this study.

  • PDF

Study of Factors Influenced on denitrification in wastewater treatment (폐수처리 탈질 공정에 미치는 인자 연구)

  • Jeong, Gwi-Taek;Park, Seok-Hwan;Park, Jae-Hee;Bhang, Sung-Hun;Lim, Eun-Tae;Park, Don-Hee
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.535-540
    • /
    • 2008
  • In this study, the effects of several factors such as initial nitrate concentration, C/N ratio, biomass amount and external carbon source on denitrification process were investigated using synthetic wastewater and sludge obtained from wastewater treatment facility. As a result, the condition of lower initial nitrate concentration was increased to the removal rate of nitrate than that of high concentration. The increases of C/N ratio and initial biomass amount were linearly enhanced the removal rate. The use of ethanol as external carbon source was shown the highest removal yield than that of others.

Survey on Public Responses to Odor Produced at Jangrim-Sinpyoeng Municipal and Industrial Wastewater Treatment Plant in Busan (신평장림 공단 폐수처리장 발생의 악취 조사연구)

  • Son, Hyun-Keun;Sivakumar, Subpiramaniyam;Yoon, Young-Hun
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.3
    • /
    • pp.201-208
    • /
    • 2011
  • Objective: Emissions of volatile organic compounds (VOCs) from municipal wastewater treatment plants and industrial wastewater are often overlooked as sources of exposure to toxic chemicals. VOCs from such sources evaporate readily into the air and may have significantly adverse impacts on public health. The present study aimed to establish the concentration of VOCs released from Jangrim-sinpyoeng Municipal and Industrial Wastewater Treatment plant (JWTP) in Busan, South Korea and assess the causes of the odor/stench in the surrounding residential facilities. Stench intensity, frequency and release time, and wind direction were also monitored. Methods: Onsite data were collected on a daily basis from a laboratory located on the JWTP premises through a period spanning 2006 to 2010. A second set of data was obtained in 2006 by conducting a questionnaire survey with 210 respondents living near JWTP. The experimental and survey data were analysed statistically using the SPSS package. Results: The survey results showed that people residing around JWTP strongly perceive a stench from the plant. The intensity of the stench was influenced significantly by wind direction and the location of the apartments facing the JWTP. Public participation formed a significant step in determining the quality of the study environment. Conclusion: Onsite data and survey data obtained in 2006 indicate that the nature of the odor experienced by residents is due to the intensity of total VOCs released by JWTP. However, additional research is needed to determine the effects of the VOC pollution on public health and quality of life.