• Title/Summary/Keyword: Industrial robots

Search Result 495, Processing Time 0.034 seconds

A Study on the Performance Level of Industrial Robot Cell Safety Function Control System (산업용 로봇 셀 안전기능 제어시스템 성능수준 연구)

  • Jung-nam Lee;Dong-ho Rie
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.1-9
    • /
    • 2023
  • Most existing industrial robots have fences installed around them to ensure safety. However, industrial sites are recently being transformed into workspaces shared by both robots and humans working cooperatively, wherein the robots are without security fencing owing to the development of sensor technology. However, in the last five years (2017-2021), 16 deaths have occurred due to robots at industrial sites, with the main cause of the accidents being workers approaching an industrial robot in operation and getting entangled with or colliding into the robot and its peripherals. To prevent such accidents, multilateral research is needed. To this end, this study analyzes the nonconforming contents of safety inspections for industrial robots and demonstrates the safety performance of the safety function control system implemented in an industrial robot cell. In addition, to ensure the fundamental safety of industrial robots, this study proposes the introduction of a safety certification system so that safety functions can be implemented in the design, manufacturing, and installation stages of the robots.

Which is Your Favorite?: The Impact of Robot's Height on Consumer's Acceptance of a Telepresence Robot

  • Choi, Jung Ju;Kwak, Sonya S.
    • Design Convergence Study
    • /
    • v.15 no.4
    • /
    • pp.59-70
    • /
    • 2016
  • Due to the newly emerging market for telepresence robots and the research in the area, designers and developers lack guidelines for specifying the physical characteristics of telepresence robots. On the basis of the previous literature, we attempted to make a distinction between two robot height approaches for telepresence robot designs: floor- versus desk-based robot designs. This research investigated the effects of these robot height approaches on consumer acceptance. We predicted that there would be difference between floor-based robots and desk-based robots regarding consumers' evaluation of and intent to purchase social robots. A study using two types of robots was conducted with sixty university students. The results showed that participants perceived desk-based robots as more useful than floor-based robots. In addition, the participants evaluated desk-based robots more positively than floor-based robots. Purchase intention and willingness to pay also showed similar results as evaluation. The implications for the design of telepresence robots in terms of increasing acceptance of robots are discussed in detail.

Design and Manufacture of Laser Tracking System for Measuring Position Accuracy of Robots (로봇의 위치 정밀도 측정을 위한 LTS의 설계 및 제작)

  • Hwang, Sung-Ho;Lee, Ho-Gil;Park, Gyeong-Rak;Kim, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.518-522
    • /
    • 2001
  • The main problem of the calibration of robots is to measure the position and orientation of a robot end effector. The calibration methods can be used as tool to improve the accuracy of robots without change of the arm or control architecture or robots. But such calibration methods require accurate measurements. Dynamic measurement of position and orientation provides a solution for this problem and improves dynamic accuracy by dynamic calibration of robots. This paper describes the development of the laser tracking system capable of determining the static and dynamic performance of industrial robots. The structure and systems components are presented and basic experimental results are included to demonstrated the instrument performance. The system can be applied to the remote controlled mobile robots as well s the calibration of robots.

  • PDF

Development Status and Industrial Requirements for Network-based Robots (네트워크 기반 로봇의 개발 현황 및 업체 요구 사항)

  • Park, Kwang-Hyun;Lee, Kwan-Woo;Choi, Byoung-Wook;Cho, Heung-Jae;NamGoong, Hwe-Moon;Park, Jin-Woo;Oh, Sang-Rok;Suh, Il-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.196-204
    • /
    • 2007
  • In this paper, we are looking for requirements of software, hardware and application for use in network-based robots and also directions in building standardization and research activities by reviewing technical status of the robot industries developing robots. The questions are including awareness of RUPI(Robot Unifies Platform Initiative) activities, target market and applications, hardware specifications, software development technologies, and HRI(Human Robot Interaction). The RUPI committee creates standard and drives implementation software for network-based robots through industrial requirements as like of the results. Many robots have been developed and launched services based on RUPI 1.0 standards. Based on this achievement we are expanding RUPI standard to include thin and thick client robots. The results also show that which one is important and urgent technology in the sense of industrial robotic business.

  • PDF

A Study on the Development of Finger Fault Diagnosis System for Industrial Robots (산업용 로보트의 손가락고장 진단시스템 개발에 관한 연구)

  • 김병석;송수정
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.110-114
    • /
    • 1995
  • Bacause of increasing the use in Industrial robots, the accident rate has been increasing now a days. The prediction of accident could be very hard as there are so many factors which occured accident. Removing the accident factors in industrial robots can be diagnosed by the human experts who are very familiar with in those area. The purpose of this study is a development of finger fault diagnosis system for industrial robots. We have many problems such as a long time to get the expert knowledge and the number of expert to be limited. To solve these problems lots of investment and time are required, and then the exepert system to finger fault diagnosis for industrial robots can be applied.

  • PDF

A Dynamic Panel Analysis of the Determinants of Adoption of Industrial Robots (동적 패널모형을 이용한 산업용 로봇 도입의 결정요인 분석)

  • Jeong, Jin-Hwa;Im, Dong-Geun
    • Journal of Technology Innovation
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2018
  • In this paper, we analyze the determinants of the adoption of industrial robots using the data from 42 countries, and thereby examine the factors underlying the rapid expansion of industrial robots in Korea. To this end, the industrial robot data for the years 2001-2016 were drawn from the World Robotics dataset of the International Federation of Robotics (IFR). The explanatory variables included labor market environment variables and innovation capacity variables extracted from the dataset of the relevant international organizations. For data analysis, the Arellano-Bond dynamic panel analysis was performed to control for the endogeneity problem of some explanatory variables. The empirical results confirmed the exceptionally rapid expansion of industrial robots in Korea as compared to other countries, even when considering the national income level, employment cost, and innovation capacity. This phenomenon could be attributed to both the demand-side and supply-side factors. For one thing, changes in the labor market environment, such as an increase in employment costs, have led to an increase of the corporate demand for industrial robots. For another, the supply-side factors, such as an increase in the capital intensity and innovation capacity of companies, have also contributed to the widespread adoption of industrial robots.

Fundamental framework toward optimal design of product platform for industrial three-axis linear-type robots

  • Sawai, Kana;Nomaguchi, Yutaka;Fujita, Kikuo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.157-164
    • /
    • 2015
  • This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reducedorder model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini-max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.

Failure Detection Method of Industrial Cartesian Coordinate Robots Based on a CNN Inference Window Using Ambient Sound (음향 데이터를 이용한 CNN 추론 윈도우 기반 산업용 직교 좌표 로봇의 고장 진단 기법)

  • Hyuntae Cho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2024
  • In the industrial field, robots are used to increase productivity by replacing labors with dangerous, difficult, and hard tasks. However, failures of individual industrial robots in the entire production process may cause product defects or malfunctions, and may cause dangerous disasters in the case of manufacturing parts used in automobiles and aircrafts. Although requirements for early diagnosis of industrial robot failures are steadily increasing, there are many limitations in early detection. This paper introduces methods for diagnosing robot failures using sound-based data and deep learning. This paper also analyzes, compares, and evaluates the performance of failure diagnosis using various deep learning technologies. Furthermore, in order to improve the performance of the fault diagnosis system using deep learning technology, we propose a method to increase the accuracy of fault diagnosis based on an inference window. When adopting the inference window of deep learning, the accuracy of the failure diagnosis was increased up to 94%.

Velocity profile generation methods for industrial robots and CNC machine tools

  • Kim, Dong-Il;Song, Jin-Il;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.306-311
    • /
    • 1992
  • We propose software algorithms which provide the characteristics of acceleration/deceleration essential to high dynamic performance at the transient state where industrial robots or CNC machine tools start and stop. The path error, which is one of the most significant factors in performance evaluation of industrial robots and CNC machine tools, is analyzed for linear, exponential, and parabolic acceleration/deceleration algorithms in case of circular interpolation. The analysis shows that the path error depends on the acceleration/deceleration routine and the servo control system. In experiments, the entire control algorithm including the proposed acceleration/deceleration algorithms is executed on the motion control system with a floating point digital signal processor(DSP) TMS320C30 as a CPU. The experimental results demonstrate that the proposed algorithms are very effective in controlling axes of motion of industrial robots or CNC machine tools with the desired characteristics.

  • PDF

Monovision Charging Terminal Docking Method for Unmanned Automatic Charging of Autonomous Mobile Robots (자율이동로봇의 무인 자동 충전을 위한 모노비전 방식의 충전단자 도킹 방법)

  • Keunho Park;Juhwan Choi;Seonhyeong Kim;Dongkil Kang;Haeseong Jo;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.95-103
    • /
    • 2024
  • The diversity of smart EV(electric vehicle)-related industries is increasing due to the growth of battery-based eco-friendly electric vehicle component material technology, and labor-intensive industries such as logistics, manufacturing, food, agriculture, and service have invested in and studied automation for a long time. Accordingly, various types of robots such as autonomous mobile robots and collaborative robots are being utilized for each process to improve industrial engineering such as optimization, productivity management, and work management. The technology that should accompany this unmanned automobile industry is unmanned automatic charging technology, and if autonomous mobile robots are manually charged, the utility of autonomous mobile robots will not be maximized. In this paper, we conducted a study on the technology of unmanned charging of autonomous mobile robots using charging terminal docking and undocking technology using an unmanned charging system composed of hardware such as a monocular camera, multi-joint robot, gripper, and server. In an experiment to evaluate the performance of the system, the average charging terminal recognition rate was 98%, and the average charging terminal recognition speed was 0.0099 seconds. In addition, an experiment was conducted to evaluate the docking and undocking success rate of the charging terminal, and the experimental results showed an average success rate of 99%.