• Title/Summary/Keyword: Industrial incinerator

Search Result 91, Processing Time 0.027 seconds

Characteristics of Heavy Metal Emissions from Stationary Sources (고정오염원에서의 중금속 배출특성 연구)

  • Park, Jung-Min;Lee, Sang-Bo;Cha, Jun-Seok;Kwon, Oh-Sang;Lee, Sang-Hak
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.574-583
    • /
    • 2008
  • The results of HAPs emission data using TRI (Toxic Release Inventory), SODAM (Source Data Management system) were investigated and the emissions of 7 heavy metals from their sources and emission processes were also analyzed. Questionnaire for source data analysis as well as the stack sampling were carried out for 17 factories among 6 selected industrial types. The annual amount of emissions was estimated based on the measured concentration and flow rates. All sources were operated with high efficiency control devices and the concentration levels of all heavy metals were shown to be below 0.1 to of regulation standard. The highest emission source of heavy metals was steel manufacturing industry with the annual emission of 342.9 kg/yr and followed by hazardous waste incinerator, paint manufacturing, nonferrous metal manufacturing, rolling & press goods manufacturing and storage battery manufacturing. In the case of Hg, the emissions were quite significant from electric acros of steel manufacturing industry, although the concentration level was below the emission standard, showing the necessity of specific care for its management.

Development of the vac Source Profile using Collinearity Test in the Yeosu Petrochemical Complex (여수석유화학산단의 공선성 시험을 이용한 VOC 오염원 분류표 개발)

  • Jeon Jun-Min;Hur Dang;Hwang In Jo;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.315-327
    • /
    • 2005
  • The total of 35 target VOCs (volatile organic compounds), which were included in the TO-14, was selected to develop a VOCs' source profile matrix of the Yeosu Petrochemical Complex and to test its collinearity by singular value decomposition(SVD) technique. The VOCs collected in canisters were sampled from 12 different sources such as 8 direct emission sources (refinery, painting, wastewater treatment plant, incinerator, petrochemical processing, oil storage, fertilizer plant, and iron mill) and 4 general area sources (gasoline vapor emission, graphic art activity, vehicle emission, and asphalt paving activity) in this study area, and then those samples were analyzed by GC/MS. Initially the resulting raw data for each profile were scaled and normalized through several data treatment steps, and then specific VOCs showing major weight fractions were intensively reviewed and compared by introducing many other related studies. Next, all of the source profiles were tested in terms of degree of collinearity by SVD technique. The study finally could provide a proper VOCs' source profile in the study area, which can give opportunities to apply various receptor models properly including chemical mass balance (CMB).

PAHs Source Fingerprints for Municipal Incinerator, Motor Vehicle Fuels and Industrial Boilers Emission (발생원별에 따른 PAHs 배출특성)

  • 박찬구;윤중섭;김민영;손종열;모세영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.331-343
    • /
    • 2004
  • The results of individual PAH source profiles that can be applied to receptor model are as follows. The sum of 16 PAH concentrations was 391.41 ng/S㎥ in a tunnel. Phenanthrene was the most abundant compound among 16 PAH, and then pyrene, fluoranthene, anthracene, and naphthalene can be seen in elevated contents. 11,056.61 ng/S㎥ of 16 PAH concentrations in BC oil boiler was two times higher than 6,582.57 ng/S㎥) of those in LNG boiler. Naphthalene was the most abundant compound in both facilities. Phenanthrene, anthracene, and acenaphthylene were the second dominant compound group in order from both facilities. BC oil boiler had relatively high concentration of pyrene compared to LNG boiler that had high concentration of fluorene and did not detect pyrene. The sum of 16 PAH concentrations emitted from MSW incinerators after APCD (air pollution control device) was three times higher than those from MSW incinerators before APCD. However, the concentrations of more than 4-ring PAH compounds (e.g., benzo (a)anthracene) before APCD were higher than those after APCD. This fact implies that PAHs generated by combustion process are eliminated in APCD and they are continuously produced in stack or atmosphere by PAHs precursors.

Application of Representative $PM_{2.5}$ Source Profiles for the Chemical Mass Balance Study in Seoul

  • Kang, Choong-Min;Kang, Byung-Wook;SunWoo, Young;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.32-43
    • /
    • 2008
  • Source samples were collected to construct source profiles for 9 different source types, including soil, road dust, gasoline/diesel-powered vehicles, a municipal incinerator, industrial sources, agricultural/biomass burning, marine aerosol, and a coal-fired power plant. Seasonal profiles for 'Chinese aerosol', aerosols derived from the urban area of China, were reconstructed from seasonal $PM_{2.5}$ compositions reported in Beijing, China. Ambient $PM_{2.5}$ at a receptor site was also measured during each of the four seasons, from April 2001 to February 2002, in Seoul. The Chemical Mass Balance receptor model was applied to quantify source contributions during the study period using the estimated source profiles. Consequently, motor vehicle exhaust (33.0%), in particular 23.9% for diesel-powered vehicles, was the largest contributor affecting the $PM_{2.5}$ levels in Seoul, followed by agricultural/biomass burning (21.5%) and 'Chinese aerosol' (13.1%), indicating contributions from long-range transport. The largest contributors by season were: for spring, 'Chinese aerosol' (31.7%); for summer, motor vehicle exhaust (66.9%); and for fall and winter, agricultural/biomass burning (31.1% and 40.1%, respectively). These results show different seasonal patterns and sources affecting the $PM_{2.5}$ level in Seoul, than those previously reported for other cities in the world.

Gasification and Pyrolysis Technology for the Treatment of Plastics Waste (플라스틱 폐기물의 건류 및 열분해)

  • Ghim, Young Sung
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.201-206
    • /
    • 1992
  • Annual amount of plastics waste including rubber and leather waste, generated in 1990 was about 2,600,000 tons. Amount of generation of plastics waste has rapidly increased, but fractions of recycling and incineration have gradually decreased. Recently, two-stage incinerator, consisting of gasifier and gas combustor, draws much attention in Korea. Plastics are gasified in the starved air condition in the gasifier and produced gas is fired in the combustor. Combustion of produced gas is much easier than that of solid plastics, and produces a little pollutants. Standardzation of technology and process automation are still needed, but this incineration technology is in the commercial stage. Next topic concerned with this two-stage incineration will be how to treat complex plastics waste including toxic substances generated from automobiles and household appliances. Pyrolysis, realized by indirect heating in inert atmosphere, can provide high-quality products with minimum emissions. Many plastics are easily decomposed into oil in pyrolysis conditions, which can be utilized as chemical feedstocks, or gasoline or kerosene depending on feed materials and operating conditions. This has been demonstrated in several pilot-scale tests performed in Japan, Germany, etc. Easy removal of HCl from PVC is one of the most decisive merits of pyrolysis process. But in general, further efforts should be made for the process to obtain marketability. The future of pyrolysis process depends on public concern about environmental problems and oil prices.

  • PDF

Analysis of all PCB Congeners in Air Samples by HRGC/HRMS (대기 시료 중 PCBs 전 이성체 분석에 관한 연구)

  • Kim, Kyoung-Soo;Song, Byung-Joo;Kim, Jong-Guk
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.309-319
    • /
    • 2003
  • This study was performed to describe analysis method of 209 PCB congeners in ambient air samples. The samples were collected by high volume air sampler in Chonju city. Extracted samples were cleaned by silicagel cleanup modified with sulfuric acid and activated carbon cleanup processing. The cleaned samples were analyzed by high resolution gas chromatography and high resolution mass spectrometry (HRGC/HRMS) with DB-5 column (60 m, 0.25 mm i.d., 0.25 m film thickness) to analyze the 209 kinds of PCB congeners. PCBs levels of air samples were detected to the range between 0.003 and $0.163pg-TEQ/m^3$. The PCBs congener of 162 kinds were detected in samples analysed using DB-5 column and 37 kinds peaks were overlapped with congeners more than one. It is difficult to isolate PCB 118/106 and PCB 105/127 in coplanar PCB, so it is likely to overestimate the concentration.. The distribution of coplanar-PCB congeners in origin source samples (Kanechlor and exhaust gas from incinerator) was compared with that in air samples, and PCB 81, PCB 77, PCB 126, and PCB 169 were higher in incinerator samples.

Properties of Chemically Activated MSWI(Municipal Solid Waste Incinerator) Mortar (도시 폐기물 소각재를 이용한 화학적 활성화 모르타르의 특성)

  • Jo, Byung-Wan;Kim, Kwang-Il;Park, Jong-Chil;Park, Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.589-594
    • /
    • 2006
  • The recycling of industrial wastes in the concrete manufacturing is of increasing interest worldwide, due to the high environmental impact of the cement and concrete industries and to the rising demand of infrastructures, both in industrialized and developing countries. The production of municipal wastes in the South Korea is estimated at about 49,902 ton per day and only 14.5% of these are incinerated and principally disposed of in landfill. These quantities will increase considerably with the growth of municipal waste production, the progressive closing of landfill, so the disposal of municipal solid waste incinerator(MSWI) ashes has become a continuous and significant issue facing society, both environmentally and economically. MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1,000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development composition variation of such alkali-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H). The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a alkali-activator. Compressive strengths with values in the 40.5 MPa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

Farm Animal Mortality Management Practices in Sunchon-si (순천시의 폐사가축 처리실태에 관한 연구)

  • Hong, Ji-Hyung
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • Disposal methods of managing carcass in Korea livestock production systems include burying, digesting, rendering, carcass dumping to manure pile, dead animal disposer and mini-incinerator. Burying was usually the most practical method of carcass disposal in our livestock farms. Burying, carcass dumping to manure pile, dead animal disposer and mini-incinerator may have environmental regulatory and economic liabilities when used as a means of carcass disposal. In many cases in this survey, these disposal methods offer a poor choice for the producer due to individual site conditions, geology, cost, air emissions, rendering plants. A survey questionnaire that addressed the issues to livestock producers was prepared. The questionnaire addressed two main topics as follows: 1) types of livestock and generation amounts of carcass 2) Number of breeding animals and disposal methods of livestock mortality. A total of 36 livestock producers were interviewed. The results of obtained in this survey were summarized as follows: The number of breeding poultry, swine, beef cow and dairy cow was 251,000, 2,600, 142 and 92 heads per year and the generation amounts of annually carcass was 0.46, 15.32, 0.36, 1.36 tons per year of each poultry, swine, beef cow and dairy cow farms, respectively. The disposal methods of carcass were burying (42%), carcass dumping to manure pile (36%), rendering (8%), incineration (6%), digesting (6%), carcass disposer (2%), respectively. These results can be used as basic information to establish the standard of carcass composting facility.

An Analytical Method of Formaldehyde in Exhaust Gases from Industrial Facilities using a HPLC under Isocratic Conditions (Isocratic 조건하에서 HPLC를 이용한 산업시설 배출가스 중 포름 알데하이드 분석)

  • Kim, Jun-Pyo;Park, Seung-Shik;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.616-624
    • /
    • 2018
  • In this study, a previous DNPH (2,4-dinitrophenylhydrazine) coupled with high performance liquid chromatography (HPLC) method to measure the concentration of formaldehyde in ambient and source environments has been improved. To improve the disadvantage of the previous HPLC method, an appropriate composition ratio of mobile phase (water: acetonitrile (ACN)) was determined and an isocratic analysis was conducted. Furthermore, limit of detection (LOD), limit of quantitation(LOQ), accuracy, and precision were investigated to verify the reliability of the analytical conditions determined. Finally, samples of exhaust gases from five different industrial facilities were applied to HPLC analytial method proposed to determine their formaldehyde concentrations. The appropriate composition ratio of the mobile phase under the isocratic condition was a mixture of water(40%) and ACN(60%). As the volume fraction of the organic solvent ACN increases, retention time of the formaldehyde peak was reduced. Detection time of formaldehyde peak determined using the proposed isocratic method was reduced from 7 minutes(previous HPLC method) to approximately 3 minutes. LOD, LOQ, accuracy, and precision of the formaldehyde determined using standard solutions were 0.787 ppm, 2.507 ppm, 93.1%, and 0.33%, respectively, all of which are within their recommended ranges. Average concentrations of the formaldehyde in five exhaust gases ranged from 0.054 ppm to 1.159 ppm. The lowest concentration (0.054 ppm) was found at samples from waste gas incinerator in a bisphenol-A manufacturing plant. The highest was observed at samples from the absorption process in manufacturing facilities of chemicals including formaldehyde and hexamine. The analytical time of the formaldehyde in ambient air can be shortened by using the isocratic analytical method under appropriate mobile phase conditions.

Source Estimation and Concentration Levels of PCBs in Ambient Air of an Industrial Area (공단지역 대기 중 PCBs의 오염농도 및 발생원 추정)

  • Kim, Kyoung-Soo;Song, Byung-Joo;Park, Seok-Un;Kim, Jong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.385-389
    • /
    • 2005
  • To understand the pollution level by polychlorinated biphenyls (PCBs) in ambient air of industrial area, PCBs concentrations were measured at Sihwa and Banwol industrial region, Korea. The concentrations of total PCB and WHO-TEQ ranged from 2,080 to $5820\;pg/m^3$ (median value is 2,760) and from 0.19 to $1.01\;pgTEQ/m^3$ (median value is 0.42), respectively. In terms of homologues composition the fraction of highly chlorinated biphenyls(from hexa-CB to deca-CB) were higher than the air samples of other regions such as jeonju and yokohama area. The cluster analysis was conducted to study the relation between the air samples and sources such as incinerator flue gases and Aroclor samples. The isomer fractions in the homologue were used as input variables. Based on the results, the industrial ambient air samples were divided from source samples with long Euclidian distance. This suggest that the ambient air samples of Sihwa and Banwol were not on the influence of Aroclor and incinerators. Therefore, further investigation on systematical air monitoring will be required to estimate the sources of PCBs in the above industrial areas.