• Title/Summary/Keyword: Industrial exposure

Search Result 1,413, Processing Time 0.034 seconds

Diisocyanate Exposure Assessment for Polyurethane Foam Manufacturing Workers (우레탄 폼 제조방식에 따른 작업자의 디이소시아네이트 노출수준 평가)

  • Jeong, Jee Yeon;Park, Sung Wook;Lee, Jee Eun;Lee, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.209-216
    • /
    • 2012
  • Objectives: Polyurethanes are usually formed by the reactions of liquid diisocyanate components with liquid polyol resin components. Although polyurethanes have advantageous properties, such as their versatility, the manufacturing process generates diisocyanates, which can cause asthma and respiratory irritation in exposed workers. This study compared the differences in diisocyante concentrations between two different (molded foam and slabstock foam) polyurethane foam manufacturing methods. Materials and Methods: Active samples and direct reading samples of diisocyanates (MDI, TDI) were collected in five polyurethane foam manufacturing companies. Results: Workers' exposure concentrations of diisocyanate (GM: 4.078 ppb, range: 1.190~23.770 ppb) in a slabstock foam manufacturing company were much higher than those (GM: 0.011 ppb, range: 0.001~0.055 ppb) in molded foam manufacturing companies. The results of the direct reading samples of diisocyanate indicated that the rapid reaction zone of the slabstock foam processes emitted large amounts of diisocyanates. Conclusions: The exposure levels of diisocyanates for all molded foam workers were much lower than the occupational exposure standard (5 ppb); however, exposure levels for many slabstock foam workers exceeded the standard.

Chemical Risk Assessment Screening Tool of a Global Chemical Company

  • Tjoe-Nij, Evelyn;Rochin, Christophe;Berne, Nathalie;Sassi, Alessandro;Leplay, Antoine
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.84-94
    • /
    • 2018
  • Background: This paper describes a simple-to-use and reliable screening tool called Critical Task Exposure Screening (CTES), developed by a chemical company. The tool assesses if the exposure to a chemical for a task is likely to be within acceptable levels. Methods: CTES is a Microsoft Excel tool, where the inhalation risk score is calculated by relating the exposure estimate to the corresponding occupational exposure limit (OEL) or occupational exposure band (OEB). The inhalation exposure is estimated for tasks by preassigned ART1.5 activity classes and modifying factors. Results: CTES requires few inputs. The toxicological data, including OELs, OEBs, and vapor pressure are read from a database. Once the substance is selected, the user specifies its concentration and then chooses the task description and its duration. CTES has three outputs that may trigger follow-up: (1) inhalation risk score; (2) identification of the skin hazard with the skin warnings for local and systemic adverse effects; and (3) status for carcinogenic, mutagenic, or reprotoxic effects. Conclusion: The tool provides an effective way to rapidly screen low-concern tasks, and quickly identifies certain tasks involving substances that will need further review with, nevertheless, the appropriate conservatism. This tool shows that the higher-tier ART1.5 inhalation exposure assessment model can be included effectively in a screening tool. After 2 years of worldwide extensive use within the company, CTES is well perceived by the users, including the shop floor management, and it fulfills its target of screening tool.

Types of Hazardous Factors and Time-trend of Exposure Levels from the Working Environment at a Shock Absorber Manufacturing Facility (자동차 쇼크업소바 제조사업장의 작업자 노출 유해인자의 종류 및 노출수준의 경시적 변화)

  • Na, Gyu-Chae;Moon, Chan-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.4
    • /
    • pp.393-405
    • /
    • 2018
  • Objective: This study examines the types of hazardous factors in the working environment and the time-trend for their exposure levels over 10 years (2007 to 2016). Study Design and Method: The types of hazardous factors and exposure levels were drawn from the 19 measurement reports on the working environment over 10 years at a shock absorber manufacturing facility. Risk assessment of the types of factors and time-trend of exposure levels were evaluated using the factors and exposure levels. Results: A total of 34 hazardous factors were evaluated. The types were noise, 15 organic compounds, seven kinds of acid sand alkalis, eight kinds of heavy metals, and three other compounds. Special management materials used were nickel, hexavalent chrome, and sulfuric acid. Human carcinogens (1A) used were trichloroethylene, nickel, and sulfuric acid. There were six types of substances belonging to the IARC's 2B (body carcinogens) classification or higher, including, methyl isobutyl ketone, ethyl benzene, and trichloroethylene. No detection was found for 627 out of the 2065 total measurements in 19 exposure survey reports, representing 30.4%. Organic solvents, acid and alkali products, and heavy metals showed continuous low exposure concentrations. Noise, welding fumes, and the evaluation of mixed solvents show a gradual decrease in geometric mean and maximum over the time-trend of 10 years. Conclusions: In the case of a shock absorber manufacturing facility, the hazardous factors of noise and the evaluation of mixed solvents still indicate high concentrations exceeding the exposure limits and necessitate reduction studies. These two factors and welding fumes showed a continuous decrease in their ten-year tendency. Organic compounds, acids/alkalis, and heavy metals were managed smoothly in a work environment of continuous low concentrations.

Development and Validation of Exposure Models for Construction Industry: Tier 1 Model (건설업 유해화학물질 노출 모델의 개발 및 검증: Tier-1 노출 모델)

  • Kim, Seung Won;Jang, Jiyoung;Kim, Gab Bae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.208-218
    • /
    • 2014
  • Objectives: The major objective of this study was to develop and validate a tier 1 exposure model utilizing worker exposure monitoring data and characteristics of worker activities routinely performed at construction sites, in order to estimate worker exposures without sampling. Methods: The Registration, Evaluation, Authorization and Restriction of Chemicals(REACH) system of the European Union(EU) allows the usage of exposure models for anticipating chemical exposure of manufacturing workers and consumers. Several exposure models have been developed such as Advanced REACH Tools(ART). The ART model is based on structured subjective assessment model. Using the same framework, a tier 1 exposure model has been developed. Worker activities at construction sites have been analyzed and modifying factors have been assigned for each activity. Korean Occupational Safety and Health Agency(KOSHA) accrued work exposure monitoring data for the last 10 years, which were retrieved and converted into exposure scores. A separate set of sampling data were collected to validate the developed exposure model. These algorithm have been realized on Excel spreadsheet for convenience and easy access. Results: The correlation coefficient of the developed model between exposure scores and monitoring data was 0.36, which is smaller than those of EU models(0.6~0.7). One of the main reasons explaining the discrepancy is poor description on worker activities in KOSHA database. Conclusions: The developed tier 1 exposure model can help industrial hygienists judge whether or not air sampling is required or not.

Evaluation of the Application of a European Chemical Risk Assessment Tool in Korea (외국 노출량 산정 프로그램(ECETOC TRA)의 국내 적용을 위한 입력변수의 보정에 관한 연구)

  • Lee, Jong Han;Lee, Kown Seob;Hong, Mun Ki
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.191-199
    • /
    • 2012
  • Objectives: The study aim was to evaluate the application of a chemical exposure assessment tool for the Korean workplace. The Ministry of Employment and Labor in Korea (KMOEL) introduced the need for workplace risk assessments in 2011, requiring the Korean chemical industry to consider both domestic and international chemical regulation policies (e.g., estimations of exposure scenarios). Exposure scenarios are required in the European Union as part of material safety data sheets (MSDS) under the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) system. Methods: Although many programs for the estimation of exposure have been developed worldwide, to date there is no standard for the Korean workplace. To develop programs suitable for the Korean workplace, we examined the applicability of the European Center for Ecotoxicology and Toxicology of Chemicals target risk assessment (ECETOC TRA), which is recommended by the European Chemical Agency (ECHA). Results: To investigate the applicability of the ECETOC TRA to Korean industry, this study simulated 15 industrial processes. The predicted respiratory exposures for four processes using origin input parameters were underestimated compared to the measured respiratory exposure. Using calibrated input parameters, results for two processes were underestimated compared to the measured respiratory exposure. This result suggests that the use of calibrated input parameters reduces the differences between predicted and measured respiratory exposure. Conclusions: we developed applicable exposure estimating method by modifying the ECETOC TRA program; one suggested the development of exposure estimating program that explains Korea domestic workplace exposure scenario.This study will support the introduction of exposure scenario in MSDS system and protect health of worker from hazardous chemical.