• 제목/요약/키워드: Industrial byproduct

검색결과 75건 처리시간 0.035초

GI/GI/c/K 대기행렬의 고객수 분포 방정식에 대한 해석 (An Interpretation of the Equations for the GI/GI/c/K Queue Length Distribution)

  • 채경철;김남기;최대원
    • 대한산업공학회지
    • /
    • 제28권4호
    • /
    • pp.390-396
    • /
    • 2002
  • We present a meaningful interpretation of the equations for the steady-state queue length distribution of the GI/GI/c/K queue so that the equations are better understood and become more applicable. As a byproduct, we present an exact expression of the mean queue waiting time for the M/GI/c queue.

지상층용 저시멘트 콘크리트의 압축강도 특성에 관한 기초적 연구 (Fundamental Study on the Compressive Strength of Low Cement Concrete for Typical Floor)

  • 송영찬;김용로;민충식;송용원;박종호;정용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.46-47
    • /
    • 2013
  • In this research, it is investigated strength development by replacement ratio of mineral admixture contents, types of superplastisizer and strength improvement material contents based on industrial byproduct to expand use of low cement concrete for typical floor.

  • PDF

시멘트 원료로서 폐.부산자원의 활용 (Utilization of Waste and Industrial Byproducts as a Raw Material in the Manufacture of Portland Cement)

  • 최상흘;박용완;지정식;오희갑
    • 한국세라믹학회지
    • /
    • 제15권3호
    • /
    • pp.149-156
    • /
    • 1978
  • The utilization of waste and industrial byproduct materials, such as blast furnace slag, shales, poor coal and anthracite briquet ash, were investigated as a source of calcareous or argillaceous material in the manufacture of Portland cement. As a slag is similar to cement in chemical compoment and contains about 40∼50% of CaO, it's utilization in cement manufacture should be suitable. The burnability was increased and the heat of clinker formation was decreased by using slag. Some consideration should betaken in the use of large quantity because of sticking in suspension preheater kiln. Suitable quantities of colliery shales and poor coal should be useable in cement manufacture as a argillaceous materials and also its combustible materials should be utilized in cement manufacture. Anthracite briquet ash is also usable as a argillaceous source and it gives good burnability.

  • PDF

ROBUST A POSTERIORI ERROR ESTIMATOR FOR LOWEST-ORDER FINITE ELEMENT METHODS OF INTERFACE PROBLEMS

  • KIM, KWANG-YEON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권2호
    • /
    • pp.137-150
    • /
    • 2016
  • In this paper we analyze an a posteriori error estimator based on flux recovery for lowest-order finite element discretizations of elliptic interface problems. The flux recovery considered here is based on averaging the discrete normal fluxes and/or tangential derivatives at midpoints of edges with weight factors adapted to discontinuous coefficients. It is shown that the error estimator based on this flux recovery is equivalent to the error estimator of Bernardi and $Verf{\ddot{u}}rth$ based on the standard edge residuals uniformly with respect to jumps of the coefficient between subdomains. Moreover, as a byproduct, we obtain slightly modified weight factors in the edge residual estimator which are expected to produce more accurate results.

Fresh and hardened properties of concrete incorporating ground granulated blast furnace slag-A review

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • 제4권4호
    • /
    • pp.283-303
    • /
    • 2016
  • Several types of industrial byproducts are generated. With increased environmental awareness and its potential hazardous effects, the utilization of industrial byproducts in concrete has become an attractive alternative to their disposal. One such by-product is ground granulated blast furnace slag (GGBS), which is a byproduct of the smelting process carried out in the iron and steel industry. The GGBS is very effective in the design and development of high-strength and high-performance concrete. This paper reviews the effect of GGBS on the workability, porosity, compressive strength, splitting tensile strength, and flexural strength of concrete.

비정형 공정부산물 In-Situ 감마선 측정 정확도 향상을 위한 효율교정 모델 최적화 방법 개발 (Development of an Efficiency Calibration Model Optimization Method for Improving In-Situ Gamma-Ray Measurement for Non-Standard NORM Residues)

  • 최우철;전태훈;송정호;김광표
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.471-479
    • /
    • 2023
  • In In-situ radioactivity measurement techniques, efficiency calibration models use predefined models to simulate a sample's geometry and radioactivity distribution. However, simplified efficiency calibration models lead to uncertainties in the efficiency curves, which in turn affect the radioactivity concentration results. This study aims to develop an efficiency calibration optimization methodology to improve the accuracy of in-situ gamma radiation measurements for byproducts from industrial facilities. To accomplish the objective, a drive mechanism for rotational measurement of an byproduct simulator and a sample was constructed. Using ISOCS, an efficiency calibration model of the designed object was generated. Then, the sensitivity analysis of the efficiency calibration model was performed, and the efficiency curve of the efficiency calibration model was optimized using the sensitivity analysis results. Finally, the radiation concentration of the simulated subject was estimated, compared, and evaluated with the designed certification value. For the sensitivity assessment of the influencing factors of the efficiency calibration model, the ISOCS Uncertainty Estimator was used for the horizontal and vertical size and density of the measured object. The standard deviation of the measurement efficiency as a function of the longitudinal size and density of the efficiency calibration model decreased with increasing energy region. When using the optimized efficiency calibration model, the measurement efficiency using IUE was improved compared to the measurement efficiency using ISOCS at the energy of 228Ac (911 keV) for the nuclide under analysis. Using the ISOCS efficiency calibration method, the difference between the measured radiation concentration and the design value for each simulated subject measurement direction was 4.1% (1% to 10%) on average. The difference between the estimated radioactivity concentration and the design value was 3.6% (1~8%) on average when using the ISOCS IUE efficiency calibration method, which was closer to the design value than the efficiency calibration method using ISOCS. In other words, the estimated radioactivity concentration using the optimized efficiency curve was similar to the designed radioactivity concentration. The results of this study can be utilized as the main basis for the development of regulatory technologies for the treatment and disposal of waste generated during the operation, maintenance, and facility replacement of domestic byproduct generation facilities.

Evaluation of Seawater Resistance of a Non-Sintering Inorganic Binder Using Phosphogypsum and Waste Lime as Activators

  • Kim, Ji-Hoon;Mun, Kyung-Ju;Hyung, Won-Gil
    • 한국건축시공학회지
    • /
    • 제18권2호
    • /
    • pp.185-193
    • /
    • 2018
  • In this study, using Granulated Blast Furnace Slag (GBFS), an industrial byproduct, and Phosphogypsum (PG), and Waste Lime (WL) as activator, non-sintering binder (NSB) which does not require a sintering process was produced, and the chemical penetration resistance was evaluated through a seawater resistance experiment. The result of the experiment showed that the inside of NSB mortar saw almost no influence from the ions in seawater due to its dense structure. Also, as it appears that only the surface reacts with ions in seawater while spreading inward is suppressed, the high seawater resistance of NSB could be confirmed.

폐자기와 3성분계 무기결합재의 혼합비율 변화에 따른 인조석재의 역학적 특성 (The Dynamic Properties of the Artificial Stone According to the Mixed Ratio Change of the Inorganic Composite and Waste Porcelain)

  • 유용진;배상우;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.95-96
    • /
    • 2012
  • This study makes with the environment-friendly artificial stone which doesn't use the cement and natural aggregate and increases the blast furnace slag that is the eco-friendly material that is the industrial byproduct, fly ash, and availability of the red mud and applies the coares aggregate substitute material as the cleistothecium. The experimental plan according to it indicated the compressive strength and flexural strength which is the most excellent in the mixied ratio 40% of the result degree of closeness magnetism of experimenting with the optimal mix obtained through the preceding stude.

  • PDF

3성분계 무기결합재의 80℃ 수중양생 시간변화에 따른 강도특성 (Strength Characteristic according to the 80℃ Water Curing Time Variation of the Ternary System Inorganic Binder)

  • 이진우;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.100-101
    • /
    • 2014
  • The global warming because of the CO2 emission and solution about this emerge as the international enviroment problem. Particularly, it is the absolutely it is needed for reducing the CO2 in the cement industry and harmful material actual condition. And the construction of home and abroad and material manufacturers tries for the technology development for the carbon dioxide and harmful material reduction which the portland cement in manufacture is usually emitted along with the increase of concerns about the environment-friendly concrete and panel. Therefore, in this research, the compressive strength of the inorganic binder and flexural strength tries to be measured in order to draw the inappropriate high temperature cure time of the ternary system inorganic binder using the blast furnace slag, red mud, silica fumewhich is the industrial byproduct with the cement substitute material, and etc.

  • PDF