References
-
Chae, K. C., Chang, S. H. and Lee, H. W. (2002a), Analysis of the M/
$G^{b}$ /1 Queue by the Arrival Time Approach, Journal of the Korean Institute of Industrial Engineers, 28(1), 36-43 -
Chae, K. C., Choi, D. W. and Lee, H. W. (2002b), A Note on the Decomposition Property for
$M^{X}$ /G/1 Queues with Generalized Vacations, Journal of the Korean Institute of Industrial Engineers, 28(3), 247-255 -
Chae, K. C. and Lee, H. W. (1995),
$M^{X}$ /G/1 Vacation Models with N-Policy: Heuristic Interpretation of the Mean Waiting Time, Journal of the Operational Research Society, 46(2), 258-264 https://doi.org/10.1057/jors.1995.31 - De Boer, P. T., Nicola, V. F. and Van Ommeren, J. C. W. (2001), The Remaining Service Time upon Reaching a High Level in M/G/1 Queues, Queueing Systems, 39(1), 55-78 https://doi.org/10.1023/A:1017935616446
- Franken, P., Konig, D., Arndt, U. and Schmidt, V. (1982), Queues and Point Processes, John Wiley & Sons, New York
- Kim, N. K. and Chae, K. C. (2003), Transform-Free Analysis of the GI/G/1/K Queue through the Decomposed Little's Formula, Computers & Operations Research, 30(3), 353-365 https://doi.org/10.1016/S0305-0548(01)00101-0
- Kimura, T. (1996), A Transform-Free Approximation for the Finite Capacity M/G/s Queue, Operations Research, 44(6), 984-988 https://doi.org/10.1287/opre.44.6.984
- Lee, H. W. (1998), Queueing Theory, Sigma Press, Seoul, Korea (written in Korean)
- Li, J. (1997), An Approximation Method for the Analysis of GI/G/1 Queues, Operations Research, 45(1), 140-144 https://doi.org/10.1287/opre.45.1.140
- Wolff, R. W. (1982), Poisson Arrivals See Time Averages, Operations Research, 30(2), 223-231 https://doi.org/10.1287/opre.30.2.223
- Wolff, R. W. (1989), Stochastic Modeling and the Theory of Queues, Prentice-Hall, Englewood Cliffs, New Jersey