• 제목/요약/키워드: Industrial Waste Water

검색결과 452건 처리시간 0.021초

GIS를 활용한 공장폐수 위탁관리시스템 구축 방안에 관한 연구 (A Study on Construction of Industrial Waste Water Trust Management System Using GIS)

  • 최병길;나영우
    • 대한공간정보학회지
    • /
    • 제16권1호
    • /
    • pp.75-81
    • /
    • 2008
  • 본 연구의 목적은 공단지역의 환경개선과 폐수위탁관리체계의 투명성을 확보하기 위해 GIS를 활용한 공장폐수 위탁관리 시스템의 구축방안에 대하여 연구하는데 있다. 공장폐수 위탁 및 수탁처리 전산관리 시스템은 공장폐수 위탁 및 수탁관련 정보 입력과 위탁확인서 출력을 위한 위탁 및 수탁 관리 시스템, 관리자가 기간별, 업종별, 폐수종류별, 업체별 위탁량을 통계분석 할 수 있는 통계분석 시스템, 위탁 업체 및 수탁업체의 공간정보와 공장폐수 위탁량 및 수탁량 분포도를 시민들에게 제공하는 WebGIS 시스템으로 구성하였다. 구축된 공장폐수 위탁관리시스템은 폐수의 발생 시점에서부터 완전 처리까지의 전 과정에서의 정확하고 확실하게 파악할 수 있을 것으로 판단된다. 업무의 전산화로 업무처리 시 발생되는 시간적, 경제적 손실을 저감할 수 있을 것으로 판단된다. 또한 공장폐수에 대한 정확한 발생량을 관리함으로써 인천지역에서 발생되는 수질오염사고를 사전에 예방하고 오염사고 발생 시 신속한 대처방안을 도출 할 수 있을 것으로 판단된다. WebGIS를 이용`한 공장폐수의 위탁량 및 수탁량 분포를 관리함으로써 시민들의 환경오염에 대한 생각을 고취시키고 지속적인 관리가 가능 할 것으로 판단된다.

  • PDF

부산광역시 일부하천의 수질특성 (Water Quality Characteristics of Busan Metropolitan Streams)

  • 김부길;문종익;고현웅;임영석;성낙창;이용두
    • 환경위생공학
    • /
    • 제16권2호
    • /
    • pp.56-62
    • /
    • 2001
  • This study is carried out to investigate the water quality changes in Busan Metropolitan streams, The results are as follows. The level of organic contaminants($BOD_{5}$ and $COD_{Mn}$) is found to be low and does not show seasonal variation in domestic waste water streams. But, the level of organic contaminants in industrial waste water streams is relatively high and seems to be seasonally variable, which is affected by other factors. The nutrient materials, such as nitrogen(as T-N, about 20mg/L) and phosphorus(as T-P about 2.0mg/L), are abundant than Nak Dong River and the general trends of contaminants level are similar to those of organic contaminants. The chronic water qualities, including organic, nutrient contaminants levels, show that the loading rates in 1998 are smaller than the past(1983, 1992). And this trend is more evident in industrial waste water streams than domestic waste water streams.

  • PDF

고속건조기에 의한 수산폐기물 완전처리장치 개발 (Development of Perfect Recycling Equipment for Sea Fish Waste)

  • 한두희
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.614-619
    • /
    • 2010
  • 수산시장이나 어항에서 발생하는 수산폐기물을 수거하여 처리하는 과정은 긴 시간과 불결한 처리로 악취발생 및 비위생적인 면이 많아 민원의 대상이 되어 왔다. 이것을 수거하여 완전 처리하는 기술을 적용하면 비위생에 대한 민원이 없어지고 자원재활용의 비율을 확실히 높일 수 있다. 본 논문에서는 지방과 단백질이 풍부한 수산폐기물을 증류건조시켜, 고형물은 가축사료로 활용하고 응축수는 탈취제나 하수처리장의 외부탄소원으로 활용하는 완전 재활용공법을 소개한다.

반도체 산업폐수의 재이용 기술에 관한 연구 (A Study on the Waste Water Recycling Technology for Semiconductor Industry)

  • 지은상;김재우;신대윤
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.137-142
    • /
    • 1999
  • Current semiconductor industry factories are relying on the end-of-pipe treatment technology for waste water treatment and thus they mostly suffer from severe industrial water shortage. As a result in order to solve those waste and industrial water problems, there requires to be changed to the Clean Technology, that is Pollution Prevention Technology. Through above strategic actions with the Clean Technology, we shall strength more powerful and logical environmental pollution prevention system than those in the past. By changing the end-of-pipe treatment technology for waste water treatment and thus they mostly suffer from severe industrial water problems, there requires to be changed to the Clean Technology, that is Pollution Prevention Technology. Through above strategic actions with the Clean Technology, we shall strength more powerful and logical environmental pollution prevention system than those in the past. By changing the end-of-pipe treatment technology with physical, chemical and biological treatment methods as a mixed stream basis for treating of semiconductor waste stream into clean technology with pollution prevention technology as a waste segregation basis, we can bet 20 to 30% investment reduction as compared with end-of-pipe treatment technology.The results for water quality analysis were as follows : 1. Water quality analysis of the before treatment : pH : 9~10.5, Conductivity : $300~7,000{\mu}s/cm$, TDS : more then $3,000mg/{\ell}$, COD : $200~250mg/{\ell}$, SS : $500~600mg/{\ell}$, n-H : $8.3mg/{\ell}$ 2. Water quality analysis of the after treatment : pH : 6.5~7.5, Conductivity : 0.059, TDS : $40{\mu}s/cm$, COD : $20mg/{\ell}$, SS : $5mg/{\ell}$ n-H : $0.6mg/{\ell}$

  • PDF

영산호의 부영양화방지를 위한 질소, 인의 배출원단위에 관한 조사연구 (Unit Loading Factor of Nitrogen and Phosphorus for Controlling Eutrophication of Youngsan Lake)

  • 류일광;이치영;강영식;김관천
    • 한국환경보건학회지
    • /
    • 제15권2호
    • /
    • pp.51-58
    • /
    • 1989
  • In order to estimate unit loading factors of N, and P for controlling eutrophication of Youngsan lake. This study was performed in 4 kinds of pollutant sources from domestic sewage, industrial waste water, livestock stall waste water and drainage of agricultural area during the period from april to october 1988. These results were as follows: 1. The sewage flow for domestic waste water was 191.2 l/capita, day and that of the gray and toilet waste water among the domestic waste water were shown 152.9 l/capita, day(80%) and 38.3 l/capita, day(20%), respectively. 2. The unit loading factor total nitrogen(T-N) for domestic waste water was 7.582g/capita, day, and that of the gray and toilet waste water among the domestic waste water were 1.826g/ capita, day(24.1%) and 5.756g/capita, day(75.9%), respectively. The other hand, the unit loading factors of total phosphorus(T-P) for domestic waste water was 0.925g/capita, day, and that of gray and toilet waste water among the domestic waste water were 0.470g/capita, day(50.8%) and 0.455g/capita, day(49.2%), respectively. 3. In offering Price per million won, the T-P loading factor for drinking manufacture, confectionery manufacture, beer-manufacture and fibre manufacture in the industrial pollutant sources estimate to be 0.350g/day, 0.099g/day, 32.351g/day and 1.536g/day, while T-N loading factor about them in the industrial pollutant sources estimate to be 4.117g/day, 2.414g/day, 106.726g/day and 60.504g/day, respectively. 4. The T-P loading factor according to wash-water of milch cow and pig were 6.735g/day and 18.526g/day, in case of T-N they were 42.397g/day and 27.226g/day, respectively. 5. The T-P loading factor for pollutants drainage in the Paddy fields, fields and forests area were 0.082g/are, day, 0.014g/are, day and 0.002g/are, day, and the T-N loading factor were 0.309g/are, day, 0.158g/are, day and 0.064g/are, day, respectively. The diffrent of the loading factor for pollutants discharges in the agricultural area were resulted from the rainful intensity, the rainful, the amount of fertilization manure, and etc.

  • PDF

일반인과 전문가의 환경문제에 대한 위해도 인식 차이 (A Comparison of Environmental Risk Perceptions between General Public and Experts)

  • 장은아;박종연;임영욱;신동천
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권2호
    • /
    • pp.75-84
    • /
    • 2001
  • Differences in risk perception on major environmental issues between general public and environmental experts were investigated in this study. Questionnaire surveys were conducted to samples from general public and environmental experts during March and April, 2000. Total number of responses was 1,126 including 773 persons from general public and 353 experts. Risk perceptions on 26 environmental issues were related with the need to regulate each issue, controllability, experience, political views, interest in environmental problem, satisfaction of environment, severity of environmental pollution. There was statistically significant difference in risk perceptions between general public and experts. Overall, general public was likely to perceive risks associated with environmental problem, as well as social need to regulate these problems more than experts. The issues with high risk perception and need to regulate were 'automobile exhaust', 'industrial air pollution', ocean pollution by industrial waste and oil exhaust', 'air pollution by chemicals', 'surface water pollution by waste from household', 'industrial and hospital waste', 'surface water pollution by pesticide'and'sewage and food waste'. Consequently, it seems necessary to manage these issues, prior to others.

  • PDF

혼합 산업폐수의 질소제거를 위한 외부 탄소원 투입과 물질수지: 실증실험 (Nitrogen Removal from a mixed Industrial Wastewater using Food-Waste Leachate and Sugar Liquid Waste as External Carbon Sources: Full-Scale Experiment)

  • 이몽학;안조환;이정훈;배우근;심호재
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.663-668
    • /
    • 2012
  • The feasibility of enhancing biological nutrient removal from an industrial wastewater was tested with food waste leachate and sugar liquid waste as external carbon sources. Long term influences of adding external carbon sources were investigated to see how the biological nutrient removal process worked in terms of the removal efficiency. The addition of the external carbons led to a significant improvement in the removal efficiency of nutrients: from 49% to approximately 76% for nitrogen and from 64% to around 80% for phosphorus. Approximately, 20% of the removal nitrogen was synthesized into biomass, while the remaining 80% was denitrified. Though the addition of external carbon sources improved nutrient removal, it also increased the waste sludge production substantially. The optimal observed BOD/TN ratio, based on nitrogen removal and sludge production, was around 4.0 in this study.

하천 수질에 대한 36시간 연속 모니터링 기법 연구 (36hrs Continuous Monitoring Methodology for Effluent and Receiving Water Quality)

  • 박정규;정홍배;문성환;류태권;류제영;황인영
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권4호
    • /
    • pp.153-159
    • /
    • 2001
  • The main point source of pollution of the Keumho river in Taegu, Korea, stems from waste from the areas of industrial complexes . Although it is widely accepted that pollutants in waste water negatively effects general water quality, it is difficult to evaluate the effluent effect because of varying conditions in ambient water and inconclusive knowledge of causative pollutants. To analyze the water in relation to the industrial effluent in the area, pH. temperature, conductivity, and Microtox toxicity of various river samples were measured. Water samples were collected every 2 hours for 36 hours from Keumho river and Dalseo stream. Data from continuous monitoring for 36 hours showed that effluent in Keumho river originated from Dalseo stream, which is near adjacent to industrial complexes. Change in toxicity and other factors tested during the 36 hours indicated that continuous monitoring was necessary for a satisfactory effluent toxicity test Furthermore, in addition to water quality monitoring, it was concluded that sediment toxicity also needed to evaluate effluent effects.

  • PDF

汚濁河川水의 地球化學的인 硏究 (第 II 報) 서울市內 河川水 및 工場排水의 化學的 酸素要求量 (Geochemical Investigations of Contaminated River Waters Part II-Chemical Oxygen Demand of River Water and Industrial Waste Water in Seoul)

  • 이용근
    • 대한화학회지
    • /
    • 제14권1호
    • /
    • pp.5-12
    • /
    • 1970
  • River water and industrial waste water in Seoul were studied by means of chemical oxygen demand(COD) as an indicator for water pollution, from August 1967 to July 1968. Rivers flowing through residential and industrial areas are badly contaminated and COD of water in Han River increases as it progresses to downstream. Seasonal variation of COD showed that higher value of COD was observed in spring and lower in autumn. It is clear that the seasonal variation of COD is influenced by the precipitation. Close relationship was found between COD and population density. The lowest COD curve obtained by plotting COD values against population density and show that the curve slopes upward. The discontinuation of the curve was shown at the population density of 14,000/km$^2$; an increase in COD was acute over the population density of 14,000/km$^2$.

  • PDF

교량 바닥판 보수공사에서 발생하는 콘크리트 폐수처리 방안 (Treatment of Concrete Wastewater in Repair of Bridge Deck)

  • 이봉학;최판길;김정기
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.125-132
    • /
    • 2008
  • As of 2003, construction waste has been produced at the level of 130,614.8 tons/day, in which the amount of waste concrete was 92,639.1 tons/day and accounted for about 66.4% of the amount of construction waste. Waste concrete is mainly produced in construction work and civil engineering work. Especially, road surface crushing method using a large amount of water requires thorough management of concrete wastewater. The aim of this study was to analyze water pollution due to concrete wastewater generated in repair of bridge deck using road surface crushing equipment and to suggest reasonable countermeasures for solve the problem. In this study, it was surveyed current conditions of produced concrete wastewater in bridge deck repair, analyzed physical features of concrete wastewater, expected effects of water pollution on inflow rivers if it is not treated, established treatment plan of water pollution by categories, and calculated capacity of each treatment process and required amount of necessary chemicals. As a result of sampling wastewater generated in field sites and testing it at a lab scale, it was revealed that the original wastewater was produced in removing concrete from bridge deck slabs using surface crushing equipment whose pH was 12.53, CODMn was 12.910mg/L, SS was 547.0mg/L, and other heavy metals were included in extremely small quantities.

  • PDF