• Title/Summary/Keyword: Industrial Vehicle

Search Result 1,570, Processing Time 0.027 seconds

Reverse Logistics Process for Electric Vehicle Batteries (전기자동차 배터리 역물류 프로세스 연구)

  • Seo, Dong-Min;Kim, Yong-Soo;Kim, Hyun-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.57-70
    • /
    • 2011
  • To address global climate change, various governments are investing in electric vehicle research and, especially in Korea, the application of electric vehicles to public transportation. The lithium batteries used in electric vehicles typically have an expected life cycle of 2-5 years. If electric vehicles become commonly used, they will generate many discarded batteries that could be harmful to the environment. Additionally, lithium batteries are potentially explosive and should be handled appropriately. Thus, reverse logistics issues are involved in handling expired batteries efficiently and safely. Reverse logistics includes the collection, recycling, remanufacturing, and discarding of waste. This study developed a reverse logistics process for electric vehicle batteries after analyzing the as-is process for lead and lithium batteries. It also developed possible disposal regulations for electric vehicle batteries based on current laws regarding conventional batteries.

Design and Evaluation of Telematics User Interface for Ubiquitous Vehicle

  • Hong, Won-Kee;Kim, Tae-Hwan;Ko, Jaepil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2014
  • In the ubiquitous computing environment, a ubiquitous vehicle will be a communication node in the vehicular network as well as the means of ground transportation. It will make humans and vehicles seamlessly and remotely connected. Especially, one of the prominent services in the ubiquitous vehicle is the vehicle remote operation. However, mutual-collaboration with the in-vehicle communication network, the vehicle-to-vehicle communication network and the vehicle-to-roadside communication network is required to provide vehicle remote operation services. In this paper, an Internet-based human-vehicle interfaces and a network architecture is presented to provide remote vehicle control and diagnosis services. The performance of the proposed system is evaluated through a design and implementation in terms of the round trip time taken to get a vehicle remote operation service.

Working Principle of a Novel Three-directional Dumping Vehicle and Its Dumping Stability Analysis Under Ground-slope Conditions

  • Kong, Min-kyu;Park, Tusan;Shim, Sung-Bo;Jang, Ik Joo
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.235-241
    • /
    • 2017
  • Purpose: It is to develop an agricultural three-directional dumping vehicle that can help farmers reduce intensive labor when carrying heavy loads and for easy dumping. In addition, a novel mechanism was applied for controlling the direction of the tilting cargo box by using a single hydraulic cylinder and simple apparatus. The overturning safety was analyzed to provide safe-use ground slope region of the vehicle to be used at upland fields and orchards. Methods: The developed three-directional dumping vehicle was constructed using a cargo box, vehicle frame, driving components, lifting components, and controller. The novel mechanism of controlling the dumping direction involves the operation of two latching bars, which selectively release or collapse the connecting edge between the vehicle frame and cargo box. A multibody dynamics analysis software (RecurDynV8R5) was used to determine the safe-use ground slope area when tilting the cargo box at slopes. A computer analysis was conducted by increasing the ground slope while rotating the vehicle when the cargo box comprised loads of 300 and 500 kg and stacking heights of 40 and 80 cm, respectively. Results: The three-directional dumping vehicle was successfully manufactured, and the cargo box was tilted at $37^{\circ}$ and $35^{\circ}$ for dumping forward and sideways. The latching bars were manually and selectively collapsed with the vehicle frame to control the dumping direction. When forward dumping, the safe-use ground slope was over $20^{\circ}$ in all vehicle directions and loaded conditions. Conclusions: A three-directional dumping vehicle was developed to reduce labor-intensive work in the farming environment. The user can easily control the dumping direction by using the control panel. The vehicle was safe to be used in most of the Korean upland fields and orchards (area over 96%) for the forward dumping.

A Study on Area Division Method to use the Hour-based Vehicle Speed Information (시간단위 차량통행 속도정보의 활용을 위한 구역분할 방법의 연구)

  • Park, Sung-Mee;Moon, Gee-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.201-208
    • /
    • 2010
  • This research is about developing an efficient solution procedure for the vehicle routing problem under varying vehicle moving speeds for hour-based time interval. Different moving speeds for every hour is too difficult condition to solve for this type of combinatorial optimization problem. A methodology to divide the 12 hour based time interval offered by government into 5 different time intervals and then divide delivery area into 12 small divisions first and then re-organizing them into 5 groups. Then vehicle moving speeds are no longer varying in each of the 5 divisions. Therefore, a typical TSP solution procedure may be applied to find the shortest path for all 5 divisions and then connect the local shortest paths to form a delivery path for whole area. Developed solution procedures are explained in detail with 60 points example.

A Genetic Algorithm for Vehicle Routing Problems with Mixed Delivery and Pick-up (배달과 수거가 혼합된 차량경로 결정문제를 위한 유전 알고리듬의 개발)

  • Chung, Eun-Yong;Park, Yang-Byung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.4
    • /
    • pp.346-354
    • /
    • 2004
  • Most industrial logistic systems have focused on carrying products from manufacturers or distribution centers to customers. In recent years, they are faced with the problem of integrating reverse flows into their transportation systems. In this paper, we address the vehicle routing problems with mixed delivery and pick-up(VRPMDP). Mixed operation of delivery and pick-up during a vehicle tour requires rearrangement of the goods on board. The VRPMDP considers the reshuffling time of goods at customers, hard time windows, and split operation of delivery and pick-up. We construct a mixed integer mathematical model and propose a new genetic algorithm named GAMP for VRPMDP. Computational experiments on various types of test problems are performed to evaluate GAMP against the modified Dethloff's algorithm. The results show that GAMP reduces the total vehicle operation time by 5.9% on average, but takes about six times longer computation time.

Driver's Trust and Requirements Study for Autonomous Vehicle Policy (미래형 자율주행 자동차의 정책수립을 위한 연구 -운전자의 신뢰와 요구사항분석 중심으로-)

  • Choe, Nam Ho;Kim, Hyo Chang;Choi, Jong Kyu;Ji, Yong Gu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.50-58
    • /
    • 2015
  • The research on autonomous vehicle that expected to greatly reduce accidents by driver's mistakes is increasing in the development of technology. The purpose of this research is to identify the factor that affect trust in autonomous vehicles and analyze the requirements of the driver in autonomous vehicles environment. Therefore, in this study, we defined the information and functions provided by the autonomous vehicles through the investigation of the prior studies, conducted a questionnaire survey and focused group interview (FGI). The results show that competency, error management were important factors influencing trust in autonomous vehicles and identified that driver took safety related information as high priority in autonomous vehicle. Also, it was identified that driver prefer to perform the multimedia function in autonomous vehicle environment. The study is looking forward to be the reference data for design of advanced autonomous vehicle. It will contribute to the improvement of the convenience and satisfaction of the drivers.

An Application of k-Means Clustering to Vehicle Routing Problems (K-Means Clustering의 차량경로문제 적용연구)

  • Ha, Je-Min;Moon, Geeju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • This research is to develop a possible process to apply k-means clustering to an efficient vehicle routing process under time varying vehicle moving speeds. Time varying vehicle moving speeds are easy to find in metropolitan area. There is a big difference between the moving time requirements of two specific delivery points. Less delivery times are necessary if a delivery vehicle moves after or before rush hours. Various vehicle moving speeds make the efficient vehicle route search process extremely difficult to find even for near optimum routes due to the changes of required time between delivery points. Delivery area division is designed to simplify this complicated VRPs due to time various vehicle speeds. Certain divided area can be grouped into few adjacent divisions to assume that no vehicle speed change in each division. The vehicle speeds moving between two delivery points within this adjacent division can be assumed to be same. This indicates that it is possible to search optimum routes based upon the distance between two points as regular traveling salesman problems. This makes the complicated search process simple to attack since few local optimum routes can be found and then connects them to make a complete route. A possible method to divide area using k-means clustering is suggested and detailed examples are given with explanations in this paper. It is clear that the results obtained using the suggested process are more reasonable than other methods. The suggested area division process can be used to generate better area division promising improved vehicle route generations.

A Study of Vehicle Operation Policy in Warehouse (창고에서의 이송장비 운영정책에 관한 연구)

  • Lee, Hue-On;Chae, Jun-Jae;Lee, Moon-Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Controlling industrial vehicle operated by human in warehouse was not simple since the information transfer for controlling the vehicle was not easy. However, as the technology for the WMS (Warehouse Management System) has been advanced and the PDA (Personal Digital Assistant) has come into wide use in a workplace, the control of man-operated vehicle became less difficult as do to AGVS (Automated Guided Vehicle System). This study examines the ways to improve the efficiency of warehouse operation through introducing rule of task assignment for the vehicles, particularly forklift. This study, basically, refer to AGV operation policy because a great number of studies for AGV dispatching rule have been done and the mechanism for the controlling vehicles is very similar. The workers in field prefer to simple dispatching rules such as Shortest Retrieval Time First (SRTF), Shortest Travel Time First (STTF), and Longest Waiting Time First (LWTF). However, these rules have potential disadvantage. Thus, several rules made up by combining rules mentioned above are introduced and these new rules use threshold value or evaluation formula. The effectiveness of these new rules are tested by simulation and the results are compared. This study proposes favorable dispatching rules for forklift in warehouse for the efficiency of the vehicle operation and stability of service level.

A Voronoi Tabu Search Algorithm for the Capacitated Vehicle Routing Problem (차량경로 문제에 관한 보로노이 다이어그램 기반 타부서치 알고리듬)

  • Kwon, Yong-Ju;Kim, Jun-Gyu;Seo, Jeongyeon;Lee, Dong-Ho;Kim, Deok-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.469-479
    • /
    • 2007
  • This paper focuses on the capacitated vehicle routing problem that determines the routes of vehicles in such a way that each customer must be visited exactly once by one vehicle starting and terminating at the depot while the vehicle capacity and the travel time constraints must be satisfied. The objective is to minimize the total traveling cost. Due to the complexity of the problem, we suggest a tabu search algorithm that combines the features of the existing search heuristics. In particular, our algorithm incorporates the neighborhood reduction method using the proximity information of the Voronoi diagram corresponding to each problem instance. To show the performance of the Voronoi tabu search algorithm suggested in this paper, computational experiments are done on the benchmark problems and the test results are reported.

Locating Idle Vehicles in Tandem-Loop Automated Guided Vehicle Systems to Minimize the Maximum Response Time

  • Lee, Shiwoo
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.125-135
    • /
    • 2007
  • An automated guided vehicle (AGV) system is a group of collaborating unmanned vehicles which is commonly used for transporting materials within manufacturing, warehousing, or distribution systems. The performance of an AGV system depends on the dispatching rules used to assign vehicles to pickup requests, the vehicle routing protocols, and the home location of idle vehicles, which are called dwell points. In manufacturing and distribution environments which emphasize just-in-time principles, performance measures for material handling are based on response times for pickup requests and equipment utilization. In an AGV system, the response time for a pickup request is the time that it takes for the vehicle to travel from its dwell point to the pickup station. In this article, an exact dynamic programming algorithm for selecting dwell points in a tandem-loop multiple-vehicle AGV system is presented. The objective of the model is to minimize the maximum response time for all pickup requests in a given shift. The recursive algorithm considers time restrictions on the availability of vehicles during the shift.