• Title/Summary/Keyword: Industrial Motor

Search Result 1,336, Processing Time 0.03 seconds

A Study on Sensorless Control of Transverse Flux Rotating Motor Based on MRAS with Parameter Estimation

  • Kim, Ji-Won;Kim, Kwang-Woon;Kisck, Dragos Ovidiu;Kang, Do-Hyun;Chang, Jung-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.864-869
    • /
    • 2011
  • This paper presents a sensorless control and parameter estimation strategies for a Transverse Flux Rotating Motor (TFRM). The proposed sensorless control method is based on a Model Reference Adaptive System (MRAS) to estimate the stator flux. Parameter estimation theory is also applied into the sensorless control method to estimate motor parameters, such as inductances. The effectiveness of the proposed methods is verified by some simulations and experiments.

Dynamic Performance Analysis for Different Vector-Controlled CSI- Fed Induction Motor Drives

  • Mark, Arul Prasanna;Irudayaraj, Gerald Christopher Raj;Vairamani, Rajasekaran;Mylsamy, Kaliamoorthy
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.989-999
    • /
    • 2014
  • High-performance Current Source Inverter (CSI)-fed, variable speed alternating current drives are prepared for various industrial applications. CSI-fed Induction Motor (IM) drives are managed by using different control methods. Noteworthy methods include scalar Control (V/f), Input-Output Linearization (IOL) control, Field-Oriented Control (FOC), and Direct Torque Control (DTC). The objective of this work is to compare the dynamic performance of the aforementioned drive control methods for CSI-fed IM drives. The dynamic performance results of the proposed drives are individually analyzed through sensitivity tests. The tests selected for the comparison are step changes in the reference speed and torque of the motor drive. The operation and performance of different vector control methods are verified through simulations with MATLAB/Simulink and experimental results.

Microprocessor Based Sensorless Speed Control of Permanent Magnet Synchronous Motor (마이크로프로세서를 이용한 영구자석 동기전동기의 센서리스 속도제어)

  • 최재영;김성환;권영안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.121-130
    • /
    • 1996
  • Permanent magnet synchronous motor is widely used in industrial drive applications due to high efficiency, high power ratio, and easy maintenance. Position and speed detectors required in this motor increase the drive cost, and reduce the application range. Some papers present the speed control without position and speed detectors using DSP characterized by high processing performance. However, DSP increases the cost, and makes the inplementation difficult. This study has performed the speed control without position and speed detector by means of the microprocessor system which can be easily accessed. The results of simulation and experiment showed comparatively good dynamics in spite of the sensorless system.

  • PDF

Analysis on the Operation Characteristics of Induction Motor Operated by Unbalanced Voltage (불평형 전압 운전시 유도전동기의 동작 특성 해석)

  • 김종겸;박영진;정종호;이은웅
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.6
    • /
    • pp.372-379
    • /
    • 2004
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Rotating machines operating on an unbalanced voltage will draw a highly unbalanced current. As a result, the three-phase currents may differ considerably, thus resulting in an increased temperature rise in the machine. This paper presents a scheme on steady states of a three-phase induction motor under unbalanced voltages. The three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting the magnitude and phase angle of each phase. The voltage unbalanced factor(VUF) of the three-phase source voltages can then be varied to examine the different values of VUF on machine's operation characteristics.

Performances of SR Drive for Electrical Power Steering Systems

  • Ahn, Jin-Woo;Lee, Dong-Hee;An, Young-Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.188-194
    • /
    • 2003
  • The SRM (Switched Reluctance Motor) has a more inherent simple mechanical structure, greater ruggedness and higher efficiency than a conventional AC motor. It is for these reasons that SRM is widely applied in an extensive range of industrial applications. In this paper, SRM is designed and analyzed for EPS (Electrical Power Steering) application. Electrical power steering in a vehicle plays the role of reducing a driver's handling control power. For proper design, a FEM analysis is implemented according to the rotor structure. Using both a FEM and a magnetic circuit analysis, a designed motor is simulated and tested. The effectiveness of the suggested SRM drive for EPS application is verified by the prototype motor drive tests.

A novel design method for the velocity controller of DC servo motor (새로운 DC 서어보 모우터 속도제어기 설계에 관한 연구)

  • 장태규;변증남
    • 전기의세계
    • /
    • v.30 no.8
    • /
    • pp.501-508
    • /
    • 1981
  • A novel and simple method of designing the current feedback loop for the velocity controller of an armature controlled dc servo motor is presented. Instead of constructing the usual tight current feedback loop, a loose current feedback loop is suggested in this paper. More specifically, the armature current is not limited to a fixed constant value, but instead the upper bound value is allowed to be variable along with the present motor speed. The control system designed in this manner shows that the motor under control is robust to a wide range of loading conditions and yields a more rapid transient characteristics which is verified experimentally by applying the method in the design of the controller for an Industrial robot.

  • PDF

Investigation of the Impact of Voltage Sags and Temporary Interruptions on 3-Phase Induction Motors (배전계통 순간전압강하 및 순간정전이 3상 유도전동기에 미치는 영향 검토)

  • Kang, Bong-Seok;Kim, Jae-Chul;Moon, Jong-Fil;Yun, Sang-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.106-109
    • /
    • 2003
  • This paper describes the various characteristics of voltage sags and temporary interruptions which can affect the functions of 3-phase induction motors. These assorted characteristics include motor speed loss, voltage recovery, motor reacceleration, and transient characteristics. An experimental study on induction motor behavior was also carried out to confirm these impacts. Besides, sequential voltage sags of short duration were considered for this paper. The results show that the occurrence of the second voltage sag after the first one may affects the induction motor adversely.

  • PDF

Fundamental Design of Disk type Single-Phase Switched Reluctance Motor (디스크형 단상 스위치드 릴럭턴스 모터의 기본 설계)

  • Lee, Jong-Han;Lee, Eun-Woong;Jo, Hyun-Gil;Kim, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.9-11
    • /
    • 1996
  • The Switched Reluctance Motor is an electric machine in which torque is produced by the tendency of its movable part to move to a position where the inductance of the excited winding is maximized. The main advantages of this motor lie in the simple robust construction and low manufacturing cost. In this paper, we describe the design features of single-phase switched reluctance motor for low-power variable-speed drives.

  • PDF

Analogue type Starter of Single Phase Induction Motor Removing Noise and Arc (소음과 불꽃을 제거한 단상유도전동기의 아날로그식 기동기 설계)

  • Park Su-Kang;Cho Geum-Bae;Baek Hyung-Lae;Lim Yang-Su;Lee Sung-Kil;Lim Jong-Yeun
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.654-656
    • /
    • 2001
  • This research used triac that is semi-conductor that act to static contact to overcome happened shortcoming been using mechanical centrifugal force switch usually Detect starting current of single phase induction motor and decided moving time. Therefore, could improve life of switch semipermanently. Also, wish to reduced impact that electric motor suffers at the starting moment and do stable starting which there is no life improvement and noise of electric motor itself, arc.

  • PDF

Winding Fault Diagnosis of Induction Motor Using Neural Network

  • Song Myung-Hyun;Park Kyu-Nam;Woo Hyeok-Jae;Lee Tae-Hun;Han Min-Kwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.2
    • /
    • pp.105-109
    • /
    • 2005
  • This paper proposed a fault diagnosis technique of induction motors winding fault based on an artificial neural network (ANN). This method used Park's vector pattern as input data of ANN. The ANN are firstly learned using this pattern, and then classify between 'healthy' and 'winding fault' (with 2, 10, and 20 shorted turn) induction motor under 0, 50, and $100\%$ load condition. Also the possibility of classification of untrained turn-fault and load condition are tested. The proposed method has been experimentally tested on a 3-phase, 1 HP squirrel-cage induction motor. The obtained results provided a high level of accuracy especially in small turn fault, and showed that it is a reliable method for industrial application