• Title/Summary/Keyword: Industrial Blower

Search Result 44, Processing Time 0.026 seconds

The Noise Reduction of Industrial Blower by Optimal Positioning of Buff (버프의 최적 위치를 통한 산업용 송풍기의 소음저감)

  • Kim, Chang-Ho;Son, In-Soo;Ahn, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 2009
  • In a running blower, there are various exciting forces which can generate noise. The noise of an running industrial fan or blower depends on the structure of a fan, the machining accuracy of each element, and assembled conditions. Many studies have been carried out to reduce the noise of it. In this study, 3-hole buffs are used in pipe of blower to study the influence the number and position of buffs on the noise reduction at inlet and outlet in pipe. Commercial engineering software ANSYS and SYSNOISE were employed to analyze the characteristics and reduction ratio of pressure. It is concluded that optimal position and number of buffs in pipe of blower to show the least reduction ratio of pressure.

  • PDF

The Noise Reduction of Industrial Blower Using Buff Shapes in Silencer (소음기내의 버프 형상을 이용한 산업용 송풍기의 소음저감)

  • Kim, Chang-Ho;Son, In-Soo;Ahn, Tae-Soo;No, Tae-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The noise of an running industrial fan or blower depends on the type of a fan, the machining accuracy and assembled conditions of each element, and buffs. Many studies have been carried out to reduce the noise through silencer in blower. In this study, 3 types of buffs which have different hole are employed in pipe of blower to study the influence the number and arrangement of buffs on the noise reduction at inlet and outlet in pipe. Commercial engineering software ANSYS was employed to analyze the characteristics and reduction ratio of pressure. Experimental results shows that optimal one can reduce the reduction ratio of noise as much as 16 percents in the laboratory. Good agreement was found between the analysed ratio of noise reduction and those obtained from the experiments.

Analysis of Noise Characteristic of Uneven Pitch Regenerative Blower (부등피치를 적용한 재생 블로워의 소음특성 연구)

  • Lee, Kyoung-Yong;Jung, Uk-Hee;Kim, Jin-Hyuk;Kim, Cheol-Ho;Choi, Young-Seok;Ma, Jae-Hyun;Jeong, Kyung-Ho;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.71-75
    • /
    • 2015
  • The flow and noise characteristics of the regenerative blower are evaluated experimentally. To decrease the noise of regenerative blower at a high frequency, we arrange the impeller vanes unevenly by special formula. The uneven pitch formular consists of the combination of trigonometric function. The magnitude of degree between each vanes and the control parameters of trigonometric functions are main design parameters for the uneven pitch. The flow characteristics of even and uneven impellers are tested by the fan tester and compared each results. The efficiency of a blower is calculated by the axial power using a dynamo system. The noise property of designed impeller is measured in an anechoic room. In this study, we certify that the uneven pitch impeller is effective in the noise reduction at a high frequency.

A Study on the Acoustic Power Estimation in the Blower for a Vehicle Air-handling System (승용차 공조계용 블로우어의 음향출력 평가에 관한 연구)

  • Kim, Seock-Hyun;Yoo, Sung-Woo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.87-93
    • /
    • 1997
  • A Special purpose program, based on the dimensional analysis, was developed to estimate the wide band turbulent noise in the blower of vehicle airhandling system. Acoustic power level was measured at 4 rating points around the operating condition. The experiment was performed on the reference blower model using international standard chamber, which could measure acoustic power according to the air-handling performance. Analytical model of the blower noise was determined by the measured data. Using the analytical acoustic model, it was possible to estimated the effect by the change of the operating condition, such as flow rate, static pressure and wheel rotating speed, furthermore, the diameter and the width of blower.

  • PDF

Evaluation of Numerical Models for Analysing an Industrial Centrifugal Blower (산업용 원심블로어 수치해석을 위한 수치모델 평가)

  • Lee, Jongsung;Jang, Choonman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.688-695
    • /
    • 2012
  • The present study represents the effects of boundary condition on the performance of a centrifugal blower at the interference plane between rotational and stationary domains using three dimensional compressible Navier-Stocks equations. Two boundary conditions, frozen-rotor and stage, are compared to analyze the blower performance. Installation angle between the cutoff of a volute casing and a impeller blade is also introduced to evaluate the blower performance and to understand the internal flow inside the blower. Throughout numerical simulation, it is found that the frozen rotor interface method at the interference plane represents well the variations of flow field inside the blower compared to stage interface method. However, pressure has maximum two percent error according to the installation angles while pressure is almost constant for the stage interface method. And stage interface method can relatively well predict the blower performance. Detailed internal flows of the centrifugal blower are compared and analyzed by numerical simulation.

Visualization of Flow inside the Side Channel Type Regenerative Blower (사이드 채널형 재생블로워의 내부 유동 가시화)

  • Yang, Hyeonmo;Lee, Kyoung-Yong;Choi, Youngseok;Jeong, Kyungseok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.24-28
    • /
    • 2013
  • Visualization of internal flow of a regenerative blower has been made by injecting a tracer directly into the flow. For the convenience of visualization, working fluid has been replaced by water and marbling color oil has been used as a tracer. Oil droplet has been injected near the inlet of the blower and the streak has been recorded using a high speed camera with the illumination of high power light sources. At first, droplets have irregular motion in the near inlet area and enter into a groove of the impeller. Then the droplets circulate inside the groove while translated by the rotational motion of the impeller. When the droplets get out of the impeller groove, their speed is lower than that of impeller. And the droplets repeatedly enter into the groove and circulate inside the grooves. Then the droplets either flow to the outlet or reenter into the inlet area through stripper. Through this experimental study, internally circulating motion of the flow inside a regenerative blower has been characterized.

Effect of Inlet Clearance Gap on the Performance of an Industrial Centrifugal Blower with Parallel Wall Volute

  • Hariharan, Chinnasamy;Govardhan, Mukka
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.113-120
    • /
    • 2013
  • While performing numerical simulations, it is general industrial practice to neglect the clearance gap between the impeller and the inlet duct. In the present work, the effect of clearance gap on the performance of an industrial sized centrifugal blower is simulated for two volutes of width ratios and various flow coefficients. The results show that the clearance has a positive effect at low mass flow rates. This is observed in the pressure rise (1.3%) as well as in efficiency (0.7%). At higher mass flow rates, it has a negative effect with a drop in efficiency of 1% and pressure drop of about 1.4%. The effect of clearance gap on volute with higher width ratio is smaller when compared with the volute with smaller width ratio.

Commercial Development of a High Pressure Turbo Blower "Greenpressor" (고압 터보 Blower "Greenpressor" 개발)

  • Choi, Moon;Petrosyants, Vartan;Zakharova, Natalia
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.323-323
    • /
    • 2003
  • Many recent development activities suggest the possibility of a high-speed turbo(centrifugal) compressor or blower for the industrial application of compressed air supplying system when used with the most advanced high-speed motor, inverter technology, and advanced bearing for high rotational speed. The problems to be overcome are of reliability, the application of mass production methods, cost effective manufacture and competitive running costs. This presentation is not focused on a specific technology advances but on an overall review of our recent experiences while we have developed the high pressure turbo blower for the commercial purpose.

  • PDF

Experimental Study for The Development of a Blower to Extend The Life of The Impeller and Reduce The Power Cost by Changing the Air Flow (공기흐름 변경으로 임펠러의 수명연장과 전력비 절감을 위한 송풍기 개발을 위한 실험적 연구)

  • Kim, Il-Gyoum;Park, Woo-Cheul;Sohn, Sang-Suk;Kim, Young-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.219-225
    • /
    • 2020
  • In this study, the prototype of a blower was designed and made to develop a long-life blower with a volume flow rate of 10,000 ㎥/min with a required total pressure efficiency of 83% or more. Five experimental impellers with various lengths of dust deflectors were manufactured and used for the erosion experiments. The erosion test was conducted by operating for 160 hours in a self-produced closed loop-type erosion test apparatus. A prototype of a model blower was designed, fabricated, and tested. The results revealed a total pressure, air volume flow rate, and efficiency of 690.6 mmAq, 16,243.6 ㎥/min, and 83.6%, respectively, as the result of conversion to a blower based on the measured value of the blower model. The prototype was designed and fabricated as the experimental erosion equipment of the blower. A blower with a dust deflector was developed by performing the erosion experiments under harsh conditions. The blower showed an improved effect of more than 190% based on the wear thickness of the impeller compared to a conventional blower without a dust deflector.

Research on Air Flow Rate Test Method for Blower System (송풍 시스템의 공기유량측정 방법에 관한 연구)

  • Lee, Jun-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.55-60
    • /
    • 2022
  • This study conducted the measurements of air flow rate for blower systems with experiment and numerical. A new airflow rate test method is suggested, with which it is possible to accurate measurements and calculate the air flow rate for blower systems. The blower(axial fan) is an industrial fluid machine device that supplies a large amount of air by driving an impeller with an electric motor, and it is widely used throughout the industry such as steel, power plant, chemical, semiconductor, LC D, food, and cement. The airflow from the blower is for exchanging the heat in the cooling unit or heat exchanger. The temperature of coolants and hydraulic oil primarily depends on the amount of airflow rate through the cooling package so its accurate estimation is very important. Moreover, it required a larger investment in time and cost since it could not be executed until the system is actually made. Therefore, this research is intended to examine the phenomenon of air flow pattern when testing air flow rate, suggested new test method, and show the result of the validation test.