• Title/Summary/Keyword: Inductively coupled plasma-atomic emission spectroscopy

Search Result 58, Processing Time 0.023 seconds

Elemental Analysis in Astragali Radix by Using ICP-AES and Determination of the Original Agricultural Place of Oriental Medicine by Using a Chemometrics (ICP-AES를 이용한 황기 속에 함유된 원소의 성분 분석과 Chemometrics를 이용한 한약재의 원산지 규명)

  • Kang, Mi Ra;Lee, Ick Hee;Jun, Hyuong;Kim, Yongseong;Lee, Sang Chun
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.311-316
    • /
    • 2001
  • We have investigated the trace amount in an oriental medicine in oder to determine the geographical origin by using inductively coupled plasma-atomic emission spectrometry(ICP-AES) and chemometric anlysis with principal component analysis(PCA) and pattern recognition. Astragali Radix from several agricultural places in Korea was selected as an example of the oriental medicine and analyzed by ICP-AES. The dried Astragali Radix sample was treated with $HNO_3$ and $H_2O_2$, then digested using microwave oven. Elements such as Mg, Al, K, Ca, Ti, Mn, Fe, Cu, Zn, and Ba with different concentrations were found an used for the identification of the origin of agriculture places. Especially, the concentration of Al, Fe, Zn and Ti were employed to investigate the relationship between. Astragali Radix and the agricultural places by PCA and pattern recognition. We have made a program that is based on chemometrics in analytical spectroscopy. The results of the chemometrics analysis indicated that a distinction among Yechon and Chechon, Chungson, Kurye and Chinese Astragali Radix could be made. We believe that principal component analysis(PCA) and pattern recognition is a valuable tool to identify the origin of Astragali Radix in terms of the agricultural place.

  • PDF

Spectroscopical Analysis of SiO2 Optical Film Fabricated by FHD(Flame Hydrolysis Deposition) (FHD(Flame Hydrolysis Deposition)공정으로 제작된 SiO2 광도파막의 분광학적 분석)

  • Kim, Yun-Je;Shin, Dong-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.896-901
    • /
    • 2002
  • Since many process parameters of FHD(Flame Hydrolysis Deposition) are involved in forming multi-component amorphous silica film ($SiO_2-B_2O_3-P_2O_5-GeO_2$), it has not been easy to predict the optical, mechanical and thermal properties of deposited film from the simple process parameters, such as source flow rate. Furthermore, the prediction of final composition of film becomes even more difficult after sintering at high temperature due to the evaporation of volatile dopants. The motivation of the study was to clarify the quantitative relationship between simple process parameters such as the flow rate of source gases and resulting chemical composition of sintered film. Hence, the compositional analysis of silica soot by FTIR(Fourier Transformation Infrared Spectroscopy) and ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) under the control of the amount of dopant was carried out to obtain the quantitative composition. By measuring spectrum of absorbance from FTIR, the compositional change of B-O, Si-O, OH($H_2O$) in silica film was measured. The concentrations of these dopants were also measured by ICP-AES, which were compared with the FTIR result. The final quantitative relationship between simple process parameters and composition was deduced from the comparison between two results.

Studying Thermochemical Conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl Eutectic Melt

  • Samanta, Nibedita;Chandra, Manish;Maji, S.;Venkatesh, P.;Annapoorani, S.;Jain, Ashish
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.279-291
    • /
    • 2022
  • In this report the thermochemical conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl melt at 773 K is discussed. The final product was a mixture of SmCl3, Al2O3, unreacted Sm2O3 and AlCl3 in the chloride melt. The electrochemical attributes of the mixture was analyzed with cyclic voltammetry (CV) and square wave voltammetry (SWV). The crystallographic phases of the mixture were studied with X-ray diffraction (XRD) technique. The major chemical conversion was optimized by varying the effective parameters, such as concentrations of AlCl3, duration of reaction and the amount of LiCl-KCl salt. The extent of conversion and qualitative assessment of efficiency of the present protocol were evaluated with fluorescence spectroscopy, UV-Vis spectrophotometry and inductively coupled plasma atomic emission spectroscopy (ICP-AES) studies of the mixture. Thus, a critical assessment of the thermochemical conversion efficiency was accomplished by analysing the amount of SmCl3 in LiCl-KCl melt. In the process, a conversion efficiency of 95% was achieved by doubling the stoichiometric requirement of AlCl3 in 50 g of LiCl-KCl salt. The conversion reaction was found to be very fast as the reaction reached equilibrium in 15 min.

Chlorination of TRU/RE/SrOx in Oxide Spent Nuclear Fuel Using Ammonium Chloride as a Chlorinating Agent

  • Yoon, Dalsung;Paek, Seungwoo;Lee, Sang-Kwon;Lee, Ju Ho;Lee, Chang Hwa
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.193-207
    • /
    • 2022
  • Thermodynamically, TRUOx, REOx, and SrOx can be chlorinated using ammonium chloride (NH4Cl) as a chlorinating agent, whereas uranium oxides (U3O8 and UO2) remain in the oxide form. In the preliminary experiments of this study, U3O8 and CeO2 are reacted separately with NH4Cl at 623 K in a sealed reactor. CeO2 is highly reactive with NH4Cl and becomes chlorinated into CeCl3. The chlorination yield ranges from 96% to 100%. By contrast, U3O8 remains as UO2 even after chlorination. We produced U/REOx- and U/SrOx-simulated fuels to understand the chlorination characteristics of the oxide compounds. Each simulated fuel is chlorinated with NH4Cl, and the products are dissolved in LiCl-KCl salt to separate the oxide compounds from the chloride salt. The oxide compounds precipitate at the bottom. The precipitate and salt phases are sampled and analyzed via X-ray diffraction, scanning electron microscope-energy dispersive spectroscopy, and inductively coupled plasma-optical emission spectroscopy. The analysis results indicate that REOx and SrOx can be easily chlorinated from the simulated fuels; however, only a few of U oxide phases is chlorinated, particularly from the U/SrOx-simulated fuels.

Layered Metal Hydroxides Containing Calcium and Their Structural Analysis

  • Kim, Tae-Hyun;Heo, Il;Paek, Seung-Min;Park, Chung-Berm;Choi, Ae-Jin;Lee, Sung-Han;Choy, Jin-Ho;Oh, Jae-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1845-1850
    • /
    • 2012
  • Layered metal hydroxides (LMHs) containing calcium were synthesized by coprecipitation in solution having two different trivalent metal ions, iron and aluminum. Two mixed metal solutions ($Ca^{2+}/Al^{3+}$ and $Ca^{2+}/Fe^{3+}$ = 2/1) were added to sodium hydroxide solution and the final pH was adjusted to ~11.5 and ~13 for CaAl-and CaFe-LMHs. Powder X-ray diffraction (XRD) for the two LMH samples showed well developed ($00l$) diffractions indicating 2-dimensional crystal structure of the synthesized LMHs. Rietveld refinement of the X-ray diffraction pattern, the local structure analysis through X-ray absorption spectroscopy, and thermal analysis also confirmed that the synthesized precipitates show typical structure of LMHs. The chemical formulae, $Ca_{2.04}Al_1(OH)_6(NO_3){\cdot}5.25H_2O$ and $Ca_{2.01}Fe_1(OH)_6(NO_3){\cdot}4.75H_2O$ were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Particle morphology and thermal behavior for the synthesized LMHs were examined by field emission scanning electron microscopy and thermogravimetricdifferential scanning calorimetry.

Effects of Carbon Nitride Surface Layers and Thermal Treatment on Field-Emission and Long-Term Stability of Carbon Nanotube Micro-Tips (질화탄소 표면층 및 열처리가 탄소 나노튜브 미세팁의 전계방출 및 장시간 안정성에 미치는 영향)

  • Noh, Young-Rok;Kim, Jong-Pil;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • The effects of thermal treatment on CNTs, which were coated with a-$CN_x$ thin film, were investigated and related to variations of chemical bonding and morphologies of CNTs and also properties of field emission induced by thermal treatment. CNTs were directly grown on nano-sized conical-type tungsten tips via the inductively coupled plasma-chemical vapor deposition (ICP-CVD) system, and a-$CN_x$ films were coated on the CNTs using an RF magnetron sputtering system. Thermal treatment on a-$CN_x$ coated CNT-emitters was performed using a rapid thermal annealing (RTA) system by varying temperature ($300-700^{\circ}C$). Morphologies and microstructures of a-$CN_x$/CNTs hetero-structured emitters were analyzed by FESEM and HRTEM. Chemical composition and atomic bonding structures were analyzed by EDX, Raman spectroscopy, and XPS. The field emission properties of the a-$CN_x$/CNTs hetero-structured emitters were measured using a high vacuum (below $10^{-7}$ Torr) field-emission measurement system. For characterization of emission stability, the fluctuation and degradation of the emission current were monitored in terms of operation time. The results were compared with a-$CN_x$ coated CNT-emitters that were not thermally heated as well as with the conventional non-coated CNT-emitters.

A Study on Co-precipitation of Indium Hydroxide (In(OH)3) for the Recovery and Determination of Trace Heavy Metals (인듐 수산화물(In(OH)3)의 공동침전을 이용한 미량의 중금속 회수 및 분석방법 연구)

  • Kwon, Seul-woo;Son, Seong-Hun;Lee, Man Seung;Nam, Sang-Ho
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.50-55
    • /
    • 2017
  • Determination of trace elements in a sample including complicated matrix is very difficult due to the interference by the matrix. Therefore, if the trace elements can be separated from the complex sample matrix and determined, the interference effects can be reduced, and it is very helpful for the overall analysis. In this study, the analytes of trace elements were separated from the sample matrix by co-precipitation with trace elements using indium hydroxide ($In(OH)_3$), then detected by inductively coupled plasma-atomic emission spectrometer (ICP-AES). Above all, the optimal conditions for the co-precipitation of elements with indium hydroxide were experimentally established. At last, salt was analyzed by the developed analytical method. No heavy metals were not found in Shinan Jeungdo salt, but trace amounts of several heavy metals except for cadmium were found in Cheonnam Yongkwang salt.

Composite of Indium and Polysorbate 20 as Inhibitor for Zinc Corrosion in Alkaline Solution

  • Li, Xiaoping;Liang, Man;Zhou, Hebing;Huang, Qiming;Lv, Dongsheng;Li, Weishan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1566-1570
    • /
    • 2012
  • The combined use of indium and polysorbate 20 (Tween 20) was considered as a new inhibition technique for zinc corrosion. Zn and Zn-In alloy coatings were prepared by electrodeposition and their morphology and composition were characterized by scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The corrosion inhibition effect of indium and Tween 20 on zinc was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). The corrosion inhibition efficiencies obtained from Tafel and EIS analyses are well in agreement. Zinc corrosion can be inhibited to some extent by the individual use of indium and Tween 20 and higher corrosion inhibition efficiency can be obtained by the combined use of indium and Tween 20.

Effects of Temperature and Pressure on Quartz Dissolution

  • Choi, Jung-Hae;Chae, Byung-Gon;Kim, Hye-Jin
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Deep geological disposal is the preferred storage method for high-level radioactive waste, because it ensures stable long-term storage with minimal potential for human disruption. Because of the risk of groundwater contamination, a buffer of steel and bentonite layers has been proposed to prevent the leaching of radionuclides into groundwater. Quartz is one of the most common minerals in earth's crust. To understand how deformation and dissolution phenomena affect waste disposal, here we study quartz samples at pressure, temperature, and pH conditions typical of deep geological disposal sites. We perform a dissolution experiment for single quartz crystals under different pressure and temperature conditions. Solution samples are collected and the dissolution rate is calculated by analyzing Si concentrations in a solution excited by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). After completing the dissolution experiment, deformation of the quartz sample surfaces is investigated with a confocal laser scanning microscope (CLSM). An empirical formula is introduced that describes the relationship between dissolution rate, pressure, and temperature. These results suggest that bentonite layers in engineering barrier systems may be vulnerable to thermal deformation, even when exposed to higher temperatures on relatively short timescales.

Characteristics of Atmospheric Respirable Particulate Matters and Trace Elements within Industrial Complex and Residential Sites in an Industrial City (산업 도시의 산업단지 부지와 주거 지역의 대기 중 호흡성 분진과 구성 미량 원소의 특성)

  • Kim, Mo-Geun;Shin, Seung-Ho;Jo, Wan-Kuen
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.1
    • /
    • pp.27-40
    • /
    • 2010
  • The current study was designed to scientifically evaluate the atmospheric particulate pollution in residences relative to their proximity to a Korean major iron/metal industrial complex (IMIC). This objective was achieved by measuring the concentrations and elemental composition of particulate matter with aerodynamic diameters equal to or less than 10 ${\mu}m$(PM10) in industrial ambient air from IMIC and residential ambient air with relative proximities to IMIC. The trace metals were analyzed using an inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The industrial mean values exceeded the Korean year/70-${\mu}g/m^3$ standard for PM10, whereas the residential mean values did not. However, the maximum residential values did exceed or were close to the Korean PM10 year standard. For individual elements, the ambient concentrations ranged widely from values in the order of a few $ng/m^3$ to thousands of $ng/m^3$. The residential mean mass concentrations in the PM10 measured in the present study were higher than or similar to those reported in earlier studies. This study suggests that residents in neighborhoods near the IMIC are exposedto elevated particulate levels compared to residents living further away from such a source.